Big Data Information Interface Feature Analysis

Yingquan Wang
Faculty of Creative Industries, City University, Kuala Lumpur, Malaysia.


Received: March 18, 2024
Accepted: April 16, 2024
Published: May 14, 2024

*Corresponding author: Yingquan Wang, Faculty of Creative Industries, City University, Kuala Lumpur, Malaysia.

Abstract

This paper delves into the development and features of big data information interfaces. It introduces the origin of big data information interfaces, emphasizing their close correlation with the rise of big data technology. The paper explores the presentation forms of big data information interfaces, emphasizing data visualization as a key method achieved through encoding and decoding stages to offer an intuitive representation of big data. Furthermore, it conducts an in-depth analysis of the characteristics of big data information interfaces, including the enormity of data scale, diversity of data types, complexity of data relationships, and real-time data feedback. By comparing traditional information interfaces with big data information interfaces, the paper highlights the advantages and necessity of the latter when facing challenges related to vast, diverse, complex, and real-time data. The development of big data information interfaces is not only a result of technological innovation but also a profound consideration of user experience and information communication effectiveness.

Keywords

Big Data Information Interfaces, Data Processing, Data Visualization

1. Overview of Big Data Information Interfaces

1.1 Big Data Processing

The development of big data information interfaces stems from the rise of big data technology. This trend not only transforms data processing methods but also gradually reveals more refined and complex characteristics throughout its evolution. Similar to traditional data processing, the process of handling big data involves meticulous layers of filtering and optimization, forming a precise and efficient workflow.

Firstly, a key aspect of big data processing is acquiring useful data with specific functionalities. This goes beyond mere data collection and requires advanced technological means to gather data from various sources and channels, ensuring the comprehensiveness and diversity of the data. This stage serves as the foundation for the entire big data information interface processing, laying a solid groundwork for subsequent data integration.

Secondly, the big data processing workflow demands the integration of diverse data into a form suitable for storage, analysis, and querying. This integration process involves data cleaning, transformation, and loading [1]. At this stage, the quality and consistency of data become crucial. Only by ensuring the accuracy and completeness of data can a reliable foundation be provided for in-depth analysis. Therefore, the design of big data information interfaces needs to consider optimizing the data integration process, and enhancing data quality, and usability. In the data analysis phase, big data information interfaces need to employ advanced analytical techniques to delve into the patterns contained in the data and obtain matching feature attributes. This requires a high level of technical expertise in selecting algorithms and models to ensure the accuracy and practicality of the analysis results. Throughout this process, designers of big data information interfaces must fully understand the requirements of different domains, providing personalized analytical services to meet the needs of users at different levels [2, 3].
Lastly, big data information interfaces need to design appropriate visualization methods to present data analysis results in an intuitive form. This involves considerations such as interface layout, chart selection, and color application. Through design elements like menus, buttons, text, icons, and images, big data information interfaces can vividly and comprehensively present massive and complex data, enabling users to understand the inherent patterns of the data at a glance and providing intuitive and effective support for decision-making.

The processing of big data information interfaces encompasses not only data collection, integration, and analysis but also emphasizes how to present data to users through reasonable visualization methods. This evolutionary process reflects the continuous development and innovation of big data technology, providing various fields with more precise and efficient means of data processing and analysis.

1.2 Forms of Big Data Information Interface Presentation

Key challenges faced in the application of big data technology are closely linked to and inseparable from the process of handling big data. Among these challenges, the critical issues confronted by big data information interfaces mainly focus on data presentation, with data visualization being the core method. Data visualization, as a means of presenting the analytical results of big data in a readable and visible form, not only facilitates users in efficiently obtaining relevant information but also plays a crucial role in the design of big data information interfaces.

Specifically, the data visualization process in big data information interfaces can be subdivided into two stages: encoding and decoding. Firstly, the encoding stage involves transforming extensive big data information into intuitive visual elements such as graphics, colors, symbols, etc. Through the use of design elements like menus, buttons, text, icons, and images, the interface can present diverse visual elements of big data information to users. This process not only aims for the efficiency of information conveyance, enabling users to quickly perceive massive information but also ensures precision, guaranteeing that the information obtained through decoding accurately reflects the original true information.

The decoding stage emphasizes the analysis and understanding of these visual elements. When facing a large amount of visualized information, users need to interpret the meanings represented by elements such as graphics, colors, and symbols accurately and swiftly. The efficiency of visual encoding lies in users quickly perceiving information, while accuracy lies in users accurately understanding this information. This process involves various factors, including user cognitive psychology, familiarity with visual design, etc. Therefore, designers of big data information interfaces need to deeply understand the characteristics of user groups to provide visual designs that align with user cognitive habits.

In the process of addressing key challenges, big data information interfaces focus on data presentation, and data visualization is the primary means to achieve this goal. The complementary nature of the encoding and decoding stages in visualization, coupled with the clever use of design elements, presents big data information to users in an intuitive and vivid manner, showcasing vast information. This not only aids users in more effectively obtaining relevant information but also provides powerful assistance in accomplishing user-targeted tasks. Therefore, in the era of big data, the visual design of big data information interfaces is not only a product of technological innovation but also a profound consideration of user experience and information conveyance effectiveness [4].

Design in the current era, set against the backdrop of big data, is a reciprocal relationship of driving and being driven, displaying and being displayed. The information within big data information interfaces possesses its own attributes, such as spatiotemporal attributes, functional attributes, type attributes, quantity characteristics, and dynamic features. These attributes and characteristics make the visual forms and interaction methods of big data information interfaces diverse. Currently, there is no unified regulation or description of the interface features of big data information interfaces. Through analysis and research, it can be summarized that the main interface features include: the enormity of data scale, diversity of data types, complexity of data relationships, real-time feedback of data, etc.

2. Characteristics of Big Data Information Interfaces

2.1 Data Scale Enormity

One of the prominent features of big data information interfaces is the vastness of data scale, a fundamental characteristic gradually highlighted in the context of rapid development in information technology. The complexity and multifaceted nature of the reasons behind the vastness of the data scale is noteworthy. Firstly, with the rapid development of technologies such as the Internet of Things (IoT) and cloud computing, users effortlessly accessing data
through networks has become a daily norm. As users engage in routine activities like clicking, reading, and querying, a substantial volume of data is transmitted in real-time, forming massive digital footprints [5]. Secondly, the widespread application of sensors has automated and comprehensive data collection. These sensors autonomously capture various data throughout the day without manual intervention, and with the significant improvement in the data-capturing capabilities of sensors, the amount of data for identical entities continues to grow.

This immense data scale makes visualization a core topic in the design of big data information interfaces. Faced with extensive datasets, relying solely on traditional text presentation makes it challenging for users to understand and grasp features and conclusions quickly. It is in this context that data visualization becomes an indispensable means. Through graphical representation, data visualization vividly depicts information, presenting the vast data scale in a more user-friendly and comprehensible manner.

In big data information interfaces, the abundance of textual information can be overwhelming, making it considerably challenging for users to find the desired information. Therefore, designing a clear and straightforward visual interface becomes crucial. By incorporating design elements such as charts, graphics, and colors, big data information interfaces can showcase extensive textual information in an intuitive and understandable manner. This clear and straightforward visual interface not only facilitates users in quickly locating the needed textual information but also enhances users' understanding and perception efficiency of the information.

In addressing the challenge posed by the vastness of the data scale, big data information interfaces achieve a more intuitive and vivid presentation of information through data visualization. This approach not only meets the demands of extensive data but also provides users with a more convenient and efficient means of information retrieval. In the era of big data, the vastness of data scale propels innovation in information interface design, making visualization a crucial pathway to solving issues related to presenting big data.

2.2 Data Type Diversity

The diversity of data types is a notable feature of big data information interfaces, manifested across various aspects such as data generation, sources, formats, and relationships. In terms of generation types, the data encompassed by big data information interfaces includes diverse types like sensor data, transaction data, and feedback data, each carrying unique information. Regarding data sources, a vast and diverse network of data sources, including social media, mobile terminals, and various sensors, broadens the avenues for information acquisition. Additionally, concerning data formats, the rich and varied forms of numeric, textual, image, and video data constitute the multifaceted representations of big data information. In terms of data relationships, structured data, unstructured data, and semi-structured data coexist in big data information interfaces, exhibiting different relational aspects.

The data presented in big data information interfaces predominantly exhibit characteristics of being unstructured or semi-structured. In contrast to traditional information interfaces where information types are typically structured data depicted clearly through table structures, big data information interfaces witness the emergence of large volumes of unstructured data due to the continuous development of the internet and sensor technologies. Unstructured data lacks unified structural attributes, making it challenging to represent through table structures and thereby increasing complexities in storage, processing, and querying.

Currently, to address the visualization challenges posed by different data types in big data information interfaces, advanced computer graphics technology plays a crucial role. For complex high-dimensional data, three-dimensional forms can be employed for expression, enabling users to directly manipulate three-dimensional data information, achieving an intuitive and vivid presentation for an enhanced user experience. For textual information, label cloud visualization technology is commonly used. By arranging and laying out keywords based on frequency or importance, combined with graphical attributes like color and size, the data information of keywords is visualized, aiding users in understanding and analyzing large amounts of textual information more effortlessly [6].

The diversity of data types in big data information interfaces serves as both a characteristic and a challenge. The utilization of advanced computer graphics technology effectively addresses the visualization needs of different data types, providing users with a more intuitive and efficient means of information presentation, further propelling innovation in information interface design.

2.3 Data Relationship Complexity

The complexity of data relationships is a crucial and distinctive feature of big data information interfaces. This feature
highlights the capability of big data to explore the future development and changes of phenomena through extensive data sources, leveraging computational and analytical correlation of data. In comparison to traditional information interfaces, big data information interfaces can scientifically extract meaningful relationships from vast and intricate data, providing users with more accurate information support and guiding decision-making.

In big data information interfaces, the complexity of data relationships is manifested in various aspects. Firstly, there is the comparison of diverse data, considered a fundamental aspect of data visualization. By presenting relationships in terms of quantity, proportion, hierarchy, etc., users can more easily comprehend the connections between different data, gaining a more comprehensive understanding of the information. Secondly, the variation of multidimensional data over time is a crucial aspect. By showcasing the comparison of data at different moments, big data information interfaces render the process of data information change more intuitive, allowing users to observe and understand the temporal characteristics of data more clearly. Additionally, the complexity of data relationships is also reflected in spatial coordinates. By presenting multidimensional data sets from different spatial locations on spatial coordinates, users can have a more intuitive psychological perception of spatial data through comparison, facilitating a deeper understanding of the data.

To express complex data relationships, big data information interfaces typically opt for visualizations. The use of such visualizations is not only for aesthetic purposes but primarily to better represent data relationships, enabling users to understand the complexity of data in an intuitive manner. Understanding and uncovering data relationships are built on the foundation of collecting, comparing, and analyzing multidimensional data. Single-dimensional data often only reflects a partial representation of phenomena, while the comparative relationships between multidimensional data, visualized through graphical representations, can reveal a series of more intricate data relationships, assisting users in gaining a more comprehensive and in-depth understanding of vast data information.

The prominent feature of complexity in data relationships allows big data information interfaces to fully leverage their advantages. Through visualization means, they delve into presenting the relationships between multidimensional data, offering users a more intuitive and comprehensive information view, thereby aiding decision-makers in better understanding and navigating complex information environments.

2.4 Data Feedback Real-Time Capability

Real-time data feedback is a prominent feature of big data information interfaces, reflecting the rapid development of data collection and streaming technologies such as sensors and the Internet. This development has made data generation and dissemination more convenient, thereby imposing higher requirements on the speed of data processing and feedback. The exponential growth in data volume necessitates timely and rapid processing and feedback to ensure the effective utilization of large amounts of data. In big data information interfaces, as certain data changes are unpredictable, graphical representations in the interface often undergo processing to emphasize key information while reducing or hiding auxiliary data, allowing users to efficiently and conveniently access relevant content.

Compared to traditional information interfaces, real-time feedback in big data information interfaces is more pronounced. In traditional interfaces, data feedback usually occurs after users complete a specific operation, whereas, in big data information interfaces, data updates and flows are continuous [7]. This fluidity causes the value of data to decrease continuously over time, making timely and effective data processing particularly crucial. Many applications within big data information interfaces, especially those requiring real-time interactions with time-sensitive data, need to process newly added data in real time to maintain the practicality of the information.

Information in big data information interfaces is generated in the form of data streams, constantly emerging, swiftly flowing, and quickly disappearing. Data flow is often irregular, with sudden surges during certain periods, exhibiting distinct characteristics of data emergence. Users display high sensitivity to data response times. Many big data information interface applications demand results to be generated within 1 second or even shorter to avoid outdated or ineffective processing outcomes. In such scenarios, big data information interfaces urgently require the ability to provide rapid and continuous real-time feedback to meet users’ demands for instantaneous information.

3. Conclusion

Currently, we find ourselves in the era of big data, undergoing a transition from quantitative to qualitative changes. The rise of this era has given birth to the emergence of big data information interfaces. These interfaces have evolved based on traditional information interfaces, sharing commonalities yet exhibiting significant differences. Through
comparative analysis, we gain a clearer understanding of the distinctions between these two types of interfaces in terms of data scale, data types, data relationships, and data feedback.

Compared to traditional information interfaces, big data information interfaces handle much larger data scales. The advent of the big data era has brought forth a massive amount of data that traditional information interfaces may struggle to handle. Leveraging advanced processing techniques and visualization methods, big data information interfaces can more effectively present, analyze, and manage large-scale data to meet users’ demands for extensive information.

Big data information interfaces encompass a more diverse range of data types. Traditional information interfaces typically deal with structured data, whereas big data information interfaces cover various types such as sensor data, transaction data, and feedback data, adding diversity and complexity to the information. This necessitates a more flexible approach in interface design to address the display and interaction requirements of different data types.

In terms of data relationships, big data information interfaces present more complex data relationships. In traditional interfaces, data relationships tend to be simpler and more direct, while big data information interfaces require advanced processing methods to showcase multidimensional and multilayered data correlations, aiding users in comprehensively understanding the complexity and underlying patterns of information.

Big data information interfaces emphasize real-time data feedback. Unlike traditional information interfaces where results are presented after user actions, data feedback in big data information interfaces is continuously flowing and updating. It demands timely and real-time information feedback in the ever-changing data environment, underscoring the challenges and necessity of interface design when dealing with real-time data streams.

Through the comparative analysis of big data information interfaces and traditional information interfaces, we gain a deeper insight into the characteristics of big data information interfaces, including significant differences in data scale, data types, data relationships, and data feedback. This analysis not only contributes to the study of cognitive processes, cognitive characteristics, and cognitive load but also provides a crucial research foundation for further exploring the needs and challenges of users in the visual cognition of big data information display.

Acknowledgements

The author thanks the Faculty of Creative Industries at City University Malaysia for supporting this research.

References


