Research on Deep Learning in Natural Language Processing

Zeyi Xu
China University of Geosciences (Wuhan), Wuhan, Hubei, China.

Abstract
Natural language processing (NLP) technology plays an important role in the field of artificial intelligence, and shows its advanced nature and outstanding advantages. With the rise of deep learning, it is widely used in the processing of language, image and text data. The introduction of deep learning has led to great changes in NLP, greatly changing the previous processing methods, and improving the computational efficiency of processing tasks such as named entity recognition, intention recognition, parsing and speech recognition. The application of deep learning in NLP is of great significance to research and practice. By applying deep learning techniques to NLP, we are able to better understand and process natural language. Deep learning models can learn and capture complex semantic and contextual relationships from large-scale data, so as to achieve more accurate and efficient natural language processing. This method has achieved remarkable results in tasks such as text classification, sentiment analysis, machine translation and dialogue systems.

Keywords
Deep Learning, Natural Language Processing, Feedforward Neural Networks

1. Introduction
As for deep learning, it is a new concept proposed on the basis of machine learning. With the help of simulating human brain neural network, corresponding exploration, analysis and interpretation are carried out. This kind of learning structure covers multiple layers and hidden layers. In contrast to shallow learning, due to the deep structure of the built model, it usually contains more than three layers of hidden layer nodes and at most ten layers, which can carry out scientific analysis of very complex function work [1]. At the same time, it highlights the advantages of feature learning. Since deep learning does not require supervision, in the process of rational use of unsupervised pre-training algorithm, original samples can be mapped into new feature space in the form of input, which helps to complete the task of prediction and classification. In addition, deep learning is also effective and can explain correlation functions with deep structure, so it has been effectively used and played a good role [2].

2. Natural Language Processing Technology
Natural Language Processing (NLP) is a technology field that studies how computers interact and process human natural language. It aims to enable computers to understand, parse, generate and manipulate human language [3].

Natural language processing technology is common in laboratories. It uses relevant statistics, machine learning algorithms and other theories and methods to complete scientific processing of pictures and texts. After the birth of deep learning, the relevant conditions for industrial application have become more perfect. From the current development situation, great progress has been made and it has been applied to different industries and played a good role.
In fact, as early as 2015, Word2vec algorithm was born. As a new way to construct word vectors, it mainly regards deep learning as an important basis and belongs to a natural language processing technology. This kind of method includes two different models, one is Skip-gram model, the other is CBOW model, the former mainly with the input of a word, to achieve the effect of effective prediction of the context, the latter is mainly with the input of a word context, to achieve the purpose of effective prediction of word meaning, the word vector is the neural network Model specific input vector. Therefore, it is not difficult to learn from Word2vec's outstanding understanding ability, in the process of using natural language processing technology, without the use of manual processing intervention way to explain the text context. And, for our country, it speeds up speed of inquiry into natural language processing algorithm, causes the simulation of word2vec word vector calculation model to be born, and increases the popularization and application of deep learning [5]. Here are some common areas of natural language processing:

Lexical Analysis: Lexical analysis is the process of decomposing the text into lexical units. This includes tasks such as word segmentation (dividing text into appropriate words), POS tagging (marking each word's part of speech, such as a noun, verb, adjective, etc.), and morphological reduction (returning a word to its basic form, such as "running" to "run"). Lexical analysis is the first step of natural language processing and provides the basis for the subsequent analysis and processing.

Syntactic Analysis: Syntactic analysis is the process of analyzing the structure and grammatical relationship of sentences. It uses grammatical rules to determine the syntactic relationships between words and represents sentences as tree structures, i.e. syntactic trees or dependency diagrams. Syntactic analysis helps to understand the components of a sentence and their relations, such as subject-predicate relation, attributive clause, adverbial clause, etc. This is crucial for understanding and generating the meaning of the sentence.

Semantic Analysis: Semantic analysis is the process of understanding the meaning and semantic relations of sentences. It involves named entity recognition (identifying the names of people, places, organizations and other specific entities in the text), relation extraction (identifying and extracting the relationships between entities), and semantic role labeling (marking the predicates in sentences and their arguments, such as subject, object, agent, etc.). Semantic analysis helps to extract deeper semantic information from text.

Information Retrieval: Information retrieval is the process of retrieving relevant information from large-scale text data based on a user's query. It involves building text indexes and processing queries. In information retrieval, text is indexed into specific data structures in order to efficiently search and match user queries. This is often used to build search engines that enable users to search the Internet for relevant text information.

Machine Translation: Machine translation is the process of translating text from one language into another. It uses automated techniques to understand the meaning of the text in the source language and generate the corresponding text in the target language. Machine translation can be implemented based on rules, statistics or neural networks. It plays an important role in promoting communication and understanding between different languages.

Text Classification: Text classification is the process of grouping text into different predefined categories. It involves training a model to learn the mapping from text features to category labels. Text categorization can be used for many applications, such as sentiment analysis (judging the emotional disposition of text), spam filtering, news categorization, etc. It provides an effective method for automatic text processing.

These techniques are often based on machine learning and deep learning methods, using large amounts of annotated data for model training. NLP technology is widely used in many applications, including robot interaction, intelligent assistant, social media analysis, automated customer service, and more. With the development of technology and research, NLP is gradually realizing more advanced and complex natural language processing tasks.

3. The Educational Blog Platform is Interested in Students' Learning

3.1 Feedforward Neural Network

Deep learning learns intricate structural representations from large-scale data. Such learning is realized through back propagation algorithm to adjust network parameters between different layers of artificial neural network through error-driven optimization algorithm. In recent years, deep convolutional networks have made great breakthroughs in graphics and image processing, video and audio processing, and recursive networks have also achieved good results in sequence data such as text and speech.

As the first proposed neural network structure, feed-forward neural network is one of the simplest neural networks. Within it, parameters propagate unidirectionally from the input layer to the output layer, as shown in Figure 1 for a four-layer feedforward neural network diagram.
3.2 Recursive Neural Network

Recurrent Neural networks (RNN) is a hot research area in the field of neural networks in recent years. The reason why recursive neural network becomes a research hotspot is that feedforward neural network or multi-layer perceptron model can not handle the data with time series relationship well. Recursive neural network has the time recursive structure, so that it can learn the time series information in the data, so that it can solve this kind of task better.

Because of the advantages of recursive neural network in time series, in recent years, many researchers in the field of natural language processing have applied recursive neural network in machine translation, language model learning, semantic role tagging, POS tagging and so on, and achieved good results.

4. Deep learning in natural Language Processing NLP

4.1 Application Process

In the application of deep learning in natural language processing, gradient descent method needs to be scientifically applied. The actual application process is as follows:

Establish the corresponding model framework. Combined with the relevant contents that should be processed, the rationality of the neural network structure is ensured, and the purpose of establishing the corresponding deep learning model framework is achieved.

Examine the model carefully. The gradient descent method is used reasonably to complete the task of checking the model, check and analyze the relevant loopholes, and make it clear whether it meets the relevant regulations.

Achieve the initialization effect of the model. After careful inspection, the relevant model is scientifically optimized in order to make up for the loopholes and defects, and the parameters of the relevant model are scientifically improved.

Continuous improvement of relevant models. The regularization method is used reasonably to improve the model parameters that do not conform to the relevant regulations in time, so as to achieve the relevant fitting regulations.

4.2 The Concrete Application of Neural Network

Word Embedding: The feedforward neural network can be used to learn word embedding representation, mapping words to low-dimensional representation in continuous vector space. This representation can capture the semantic and grammatical relationships between words and be used for tasks such as word similarity calculation and semantic
role labeling.

Text Classification: Feedforward neural networks can be used for text classification tasks, such as sentiment analysis, spam filtering, news topic classification, etc. By taking the text representation as input, the feedforward neural network can learn the classification model to classify the text into different predefined categories.

Named Entity Recognition: Feedforward neural networks can be used for named entity recognition tasks, that is, to identify and extract entities with specific meaning from the text, such as personal names, place names, organizations, etc. By taking the text sequence as input, the feedforward neural network can learn the pattern of the tag sequence and thus recognize the named entity.

Information Extraction: Feedforward neural networks can be used for tasks that extract structured information from text, such as relationship extraction and event extraction. It can learn to recognize and extract patterns of relationships or events between entities from text.

Machine Translation: Feedforward neural networks can be used as the basis for machine translation models. By taking sentences in the source language as input, the feedforward neural network can learn to map it to sentences in the target language. This approach is known as the Sequence-to-Sequence (Seq2Seq) model and is commonly used for translation and other sequence-generation tasks.

Dialogue Systems: Feedforward neural networks can be used to build dialogue systems that enable computers to interact with humans. By taking the conversation history and the current conversation as input, the feedforward neural network can learn the pattern of generating replies.

Note that although feedforward neural networks perform well for some NLP tasks, they may have limitations for some tasks with long-term dependencies, such as language modeling and sentence generation. In this case, consider more advanced models such as Recurrent Neural Networks or Transformer. However, feedforward neural network as a basic model is still widely used and important.

4.3 Application Measurement Analysis

Mark words and characters correctly. With respect to subwords, according to relevant regulations, the effect of a sequence of words can be obtained by recombination, which can be combined into a whole new sequence of words. When marking the nature of a word, make sure it is accurate. For example, they are adjectives, verbs, etc. By improving the application of in-depth learning methods, you can label semantics and semantic characters and identify named entities.

Scientific analysis of grammar. That is, reasonable analysis of the relationship between sentence grammar and different grammars. Using the scientific deep learning method can realize the automatic recognition of sentence grammar units, the ordering of the relationship between different grammar units, scientific input of specific sentences, rational use of grammar features, complete the task of creating sentence trees and execution.

Study the meaning of the word carefully. In the process of in-depth learning, we should attach importance to meaning learning and make full use of relevant unsupervised learning system. When constructing the deep neural network model, it is necessary to make scientific use of the model and conduct scientific analysis according to the context of the paper, so as to realize the goal of accurate analysis while mastering the meaning of implied words. If there are multiple word vectors, the model can be optimized. The semantic word vectors can ensure the accuracy of expression.

Scientific analysis of high emotion. When deep learning method is used to analyze the rationality of emotion, it is necessary to establish the corresponding emotion analysis model. Deep neural network can effectively complete the annotation task of related emotion instructions. In addition, it is helpful to analyze the emotional color of documents and sentences to predict the emotional features of sentences by referring to relevant rules and contextual features. Clearly, these measures play a useful role in advanced sentiment analysis, and effective use of in-depth teaching methods can improve the overall efficiency of natural language work.

5. Conclusion

Deep learning has made remarkable progress in the field of natural language processing (NLP), but some problems and challenges remain:

1) Data scarcity and labeling difficulties: Deep learning in NLP usually requires a large amount of labeling data to train accurate models. However, for some NLP tasks and specific domains, obtaining high quality annotated data on a large scale can be difficult. One of the trends in solving this problem is semi-supervised learning and
self-supervised learning approaches, which utilize unlabeled data and automatically generate labels to improve model performance.

2) Understand long-term dependencies: Sentences and text in natural languages often have long-term dependencies, while traditional recurrent neural networks (RNNs) have difficulty dealing with long sequences of dependencies. To solve this problem, models such as Long Term and Short Term memory networks (LSTMs), gated cycle units (GRUs), and Transformer have been introduced that better capture long-term dependencies.

3) Knowledge representation and reasoning: Deep learning models in NLP usually process text in the form of distributed representation. However, these representations may not adequately capture the complexity of semantics and reasoning. One of the future trends is to introduce external knowledge and common sense into models to improve their semantic understanding and reasoning, for example through knowledge maps, common sense libraries and pre-training models.

Overall, deep learning has made great progress in the field of NLP, but still faces some challenges. Future developments will focus on data and annotation acquisition, processing of long-term dependencies, knowledge representation and reasoning, multimodal processing, interpretability and interpretability, and zero-sample learning and transfer learning. With the advancement of technology and research, deep learning will continue to play an important role in NLP and further promote the development of natural language processing.

References


