References
[1] Badu-Apraku, B., Adewale, S., Paterne, A., Gedil, M., and Asiedu, R. (2020). Identification of QTLs controlling resistance/tolerance to Strigahermonthica in an extra-early maturing yellow maize population. Agronomy, 10(8): 1-18.
[2] Mageto, E. K., Makumbi, D., Njoroge, K., and Nyankanga, R. (2017). Genetic analysis of early-maturing maize (Zea Mays L.) inbred lines under stress and non-stress conditions. Journal of Crop Improvement, 31(4): 560-588.
[3] Badu-Apraku, B., Menkir, A., Ajala, S. O., Akinwale, R. O., Oyekunle, M., and Obeng-Antwi, K. (2010). Performance of tropical early maturing maize cultivars in multiple stress environments. Canada Journal of Plant Sciences, 90: 831-52.
[4] Central Statistical Agency (CSA). (2020). Agricultural Sample Survey 2019/2020: Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season) Statistical Bulletin, Volume 1, CSA, Ethiopia.
[5] Seyoum, S., Rachaputi, R., Fekybelu, S., Chauhan, Y., and Prasanna, B. (2019). Exploiting genotype x environment x management interactions to enhance maize productivity in Ethiopia. European Journal of Agronomy, 103: 165-174.
[6] Vivek, B. S., Odongo, O., Njuguna, J., Imanywoha, J., Bigirwa, G., and A. Diallo, A., et al. (2010). Diallel analysis of grain yield and resistance to seven diseases of 12 African maize (Zea mays L.) inbredlines. Euphytica, 172: 329-340.
[7] Sibiya, J., Tongoona, P., Derera, J., and van Rij, N. C. (2012). Genetic analysis and genotype x environment (G x E) for grey leaf spot disease resistance in elite African maize (Zea mays L.) germplasm. Euphytica, 185: 349-362.
[8] Yan, W., Hunt, L. A., Sheng, Q., and Szlavnics, Z. (2000). Cultivar evaluation and mega- environment investigation based on the GGE biplot. Crop Sci., 40: 59-605.
[9] Yan, W., Kang, M. S., Ma, B., Wood, S., and Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by environment data. Crop Sci., 47: 643-655.
[10] Shrestha, S., Asch, F., Dusserre, J., Ramanantsoanirina, A., and Brueck, H. (2012). Climate effects on yield components as affected by genotypic responses to variable environmental conditions in upland rice systems at different altitudes. Field Crops Res., 134: 216-228.
[11] Kang, M. S. (1998). “Using Genotype-by-environment Interaction for Crop Cultivar Development.” Advances in Agronomy, 62: 199-252.
[12] Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. Longman: New York, NY, USA, 1996.
[13] Badu-Apraku, B., Akinwale, R., Menkir, A., Obeng-Antwi, K., Osuman, A., Coulibaly, N., … Didjera, A. (2011). Use of GGE biplot for targeting early maturing maize cultivars to mega-environments in West Africa. African Crop Science Journal, 19: 79-96.
[14] Dia, M., Wehner, T. C., Hassell, R., Price, D. S., Boyhan, G. E., Olson, S., et al. (2016). Genotype x environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Sci., 56: 1645-1661.
[15] Alghamdi, S. S. (2004). Yield stability of some soybean genotypes across diverse environment. Pak. J. Biol. Sci., 7(12): 2109-2114.
[16] Magari, R. and Kang, M. S. (1993). Genotype selection via a new yield-stability statistic in maize yield trials. Euphytica, 70: 105-111.
[17] Samonte, S. O. P. B., Wilson, L. T., McClung, A. M., and Medley, J. C. (2005).Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Sci., 45: 2414-2424.
[18] Finlay, K. W. and Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14: 742-754.
[19] Eberhart, S. A. and Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Sci., 6: 36-40.
[20] Perkins, J. M. and Jinks, J. L. (1968). Environmental and genotype environmental interactions and physical measures of the environment. Heredity, 25: 29-40.
[21] Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29: 237-245.
[22] Kang, M. S. (1993). Simultaneous selection for yield and stability: Consequences for growers. Agron J., 85: 754-757.
[23] Dia, M., Wehner, T. C., Arellano, C. (2016). Analysis of genotype x environment interaction (GxE) using SAS programming. Agron J., 108: 1-15.
[24] Zobel, R. W., Wright, M. J., and Gauch, H. G. (1988). “Statistical Analysis of a Yield Trial.” Agronomy Journal, 80: 388-393.
[25] Yan, W. and M. S. Kang. (2003). GGE Biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL.
[26] Yan, W. and Tinker, N.A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science, 86: 623-645.
[27] SAS Institute. (2011). SAS® 9.3 for Windows.SAS Inst., Cary, NC.
[28] Cochran, W. G. and Cox, G. M. (1960). Experimental designs. John Wiley & Sons Inc., New York, USA.
[29] Frutos, E., Galindo, M. P., and Leiva, V. (2013). An interactive biplot implementation in R for modeling genotype- by-environment interaction. Stochastic Environ. Res. Risk Assess., 28(7): 1629-1641.
[30] R Core Team. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[31] Yan, W. and Rajcan, I. R. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Can. J. Plant Sci., 42: 11-20.
[32] Menkir, A. and Ayodele, M. (2005). Genetic analysis of resistance of grey leaf spot of mid-altitude maize inbred lines. Crop Sci., 45: 163-170.
[33] Derera, J., Tongoona, P., Vivek, B. S., and Laing, M. D. (2008). Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica, 162: 411-422.
[34] Oyekunle, M. and Badu-Apraku, B. (2017). Agronomic performance of drought-tolerant maize hybrids in diverse environments of lowland tropics. Journal of Crop Improvement, 31(6): 743-757.
[35] Badu-Apraku, B., Oyekunle, M., Obeng-Antwi, K., Osuman, A.S., Ado, S.G., Coulibay, N., Yallou, C.G., Abdulai, M., Boa-kyewaa, G. A., and Didjeira, A. (2012). Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. J. Agric. Sci., 150: 473-483.
[36] Ndhlela, T., Herselman, L., Magorokosho, C., Setimela, P., Mutimaamba, C., and Labuschagne, M., (2014). Genotype x environment interaction of maize grain yield using AMMI biplots. Crop Sci., 54: 1992-1999.
[37] Badu-Apraku, B., Abamu, F. J., Menkir, A., Fakorede, M. A. B., Obeng-Antwi, K., and C. The. (2003). “Genotype by Envi-ronment Interactions in the Regional Early Maize Variety Trials in West and Central Africa.” Maydica, 48: 93-104.
[38] Fan, X. M., Kang, M. S., Chen, H., Zhang, Y., Tan, J., and Xu, C. (2007). Yield stability of maize hybrids evaluated in mul-ti-environment trials in Yunnan, China. Agron J., 99: 220-8.
[39] Beyene, Y., Mugo, S., Tefera, T., Gethi, J., Gakunga, J., Ajanga, S., Karaya, H., et al. (2012). Yield stability of stem borer resistant maize hybrids evaluated in regional trials in East Africa. African Journal of Plant Science, 6: 77-83.
[40] Tefera, T., Mugo, S., Beyene, Y., Karaya, H., Gakunga, H., and Demissie, G. (2013). Postharvest insect pest and foliar disease resistance and agronomic performance of new maize hybrids in East Africa. International Journal of Plant Breeding and Genetics, 7: 92-104.
[41] Kang, M. S., Aggarwal, V. D., and Chirwa, R. M. (2006). Adaptability and stability of bean cultivars as determined via yield stability statistic and GGE biplot analysis. J. Crop Improv., 15: 97-120.
[42] Yan, W., Fregeau-Reid, J., Pageau, D., Martin, R., Mitchell-Fetch, J., Etienne, M., and Sparry, E. (2010). Identifying essential test locations for oat breeding in Eastern Canada. Crop Sci., 50: 505-515.
[43] Badu-Apraku, B., Akinwale, R. O., Obeng-antwi, K., Haruna, A., Kanton, R., Usuman, I., Ado, S. G., Coulibaly, N., Yallou, G. C., and Oyekunle, M. (2013). Assessing the representativeness and repeatability of testing sites for drought- tolerant maize in West Africa. Canadian Journal of Plant Science, 93: 699-714.
[44] Naroui Rad, M. R., Abdul,Kadir, M., Rafii, M., Jaafar, H. Z. E., Naghavi, M. R., and Ahmadi, F. (2013). Genotype x environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Australian Journal of crop science, 7(7): 956-961.