References
[1] Hamilton, W. R. (1853). Lectures on quaternions. Dublin: Hodges and Smith, p. 890.
[2] Kantor, I. L., Solodovnikov, A. S. (1989). Hypercomplex numbers: an elementary introduction to algebras. Springer, p. 169.
[3] Berry, T. and Visser, M. (2020). Relativistic combination of non-collinear 3-velocities using quaternions. Universe, 6(12), 237.
[4] Berry, T. and Visser, M. (2021). Lorentz boosts and Wigner rotations: self-adjoint complexified quaternions. Physics, 3(2), 352-366.
[5] Sweetser, D. B. (2010). Lorentz Boosts Using Quaternions. https://www.youtube.com/watch?v=DrVm1JTM8X4, from 3:24 till 3:32.
[6] Madelung, E. (1960). Mathematical Аpparatus of Physics. State publishing house of physical and mathematical literature, Moscow, p. 618.
[7] Manogue, C. A. and Schray, J. (1993). Finite Lorentz transformations, automorphisms, and division algebras. Jour-nal of Mathematical Physics, 34(8), 3746-3767.
[8] Korn, G. A. and Korn, T. M. (1973) Mathematical handbook for engineers and scientists. Moscow, p. 832.
[9] Dray, T., Manogue, C. A., and Okubo, S. (2001). Orthonormal eigenbases over the octonions. arXiv preprint math/0106021.
[10] Kharinov, M. V. (2018). Product of Three Octonions. Adv. Appl. Clifford Algebras, Springer Nature, 29(1), p. 16.
[11] Silagadze, Z. K. (2002). Multi-dimensional vector product. Journal of Physics A: Mathematical and General, Insti-tute of Physics Publishing, UK, 35 (23), 4949-4953.
[12] Okubo, S. (1993). Triple products and Yang–Baxter equation. I. Octonionic and quaternionic triple systems. Journal of mathematical physics, 34(7), 3273-3291.
[13] Dray, T. and Manogue C. A. (1998). The octonionic eigenvalue problem. Adv. Appl. Clifford Algebra, 8(2), 341-364.
[14] Salamon, D. A. and Walpuski, T. (2010). Notes on the octonions. ArXiv preprint, arXiv: 1005.2820, p. 95.
[15] Kharinov, M. V. (2020). The Quartet of Eigenvectors for Quaternionic Lorentz Transformation. Adv. Appl. Clifford Algebras, Springer Nature, 30(25), p. 20.
[16] Casanova, G. (1976). L’algebre vectorielle. Presses Universitaires de France-PUF, p. 118.
[17] Møller, C. (1955). The Theory of Relativity. Oxford University Press, 1955.
[18] Ungar, A. A. (2013). Hyperbolic geometry. Fifteenth International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 259-282, doi: 10.7546/giq-15-2014-259-282.
[19] Barrett, J. F. (2015). Minkovski Space-Time and Hyperbolic Geometry, MASSEE International Congress on Mathematics MICOM-2015, https://www.researchgate.net/publication/287988654_Minkowski_space-time_and_ hyperbolic_geometry_Original_2015_version.