References
[1] Badu-Apraku B., Adewale, S., Paterne, A., Gedil, M., Asiedu, R. (2020). Identification of QTLs controlling resistance/tolerance to Striga hermonthica in an extra-early maturing yellow maize population. Agronomy, 10(8): 1-18.
[2] Mageto, E. K., Makumbi, D., Njoroge, K., Nyankanga, R. (2017). Genetic analysis of early-maturing maize (Zea Mays L.) inbred lines under stress and non-stress conditions. Journal of Crop Improvement, 31(4): 560-588.
[3] Das, B., Atlin, G. N., Olsen, M., Burgueño, J., Tarekegne, A., et al. (2019). Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub-Saharan Africa. Euphytica, 1: 215-280.
[4] Sauerborn, J., Muller-Stover, D., Hershenhorn, J. (2007). The role of biological control in managing parasitic weeds. Crop Protection, 26: 246-254.
[5] Scholes, J. D., Press, M. C. (2008). Striga infestation of cereal cropsan unsolved problem in resource-limited agriculture. Curr Opin Plant Biol, 11: 180-186.
[6] Kanampiu, F. K., Ransom, J. K., Friesen, D., Gressel, J. (2002). Imazapyr and pyrithiobac movement in soil and from maize seed coats to control Striga in legume intercropping. Crop Prot, 21: 611-619.
[7] Ejeta, G. (2007). Breeding for Striga resistance in sorghum: exploitation of intricate host-parasite biology. Crop Sci, 47: 216-227.
[8] Rich, P. J., Ejeta, G. (2008). Towards effective resistance to Striga in African maize. Plant Signal Behav, 3: 618-621.
[9] Parker, C., Riches, C. R. (1993). Parasitic Weeds of the World: Biology and Control. CAB International, Wallingford, UK, p. 332.
[10] Tenebe, V. A., Kamara, H. M. (2002). Effect of Striga hermonthica on the growth characteristics of sorghum intercropped with groundnut varieties. J Agron Crop Sci, 188: 376-381.
[11] Frost, D. L., Gurney, A. L., Press, M. C., Scholes, J. D. (1997). Striga hermonthica reduces photosynthesis in sorghum: The importance of stomatal limitations and a potential role for ABA? Plant Cell Environ, 20: 483-492.
[12] Watling, J. R., Press, M. C. (2001). Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol., 3(3): 244-250.
[13] Kim, S. K. (1991). Breeding for striga tolerance and development of a field infestation technique. In Combating Striga in Africa, pp. 96-108, (Kim S.K., ed.), Proceeding of the International Workshop by IITA, ICRISAT, and IDRC, Ibadan, 22-24 August 1988, IITA, Ibadan, Nigeria.
[14] Bebawi, F. F., Eplee, R. E., Harris, C. E., Norris, R. S. (1984). Longevity of witchweed (Striga asiatica) seed. Weed Sci., 32: 494-497.
[15] Aly, R. (2007). Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev Biol Plant, 43: 304-317.
[16] Pageau, K., Simier, P., Naulet, N., Robins, R. J., Fer, A. (1998). Carbon dependency of the hemiparasite Striga hermonthica on Sorghum bicolour determined by carbon isotopic and gas exchange analyses. Austr J Plant Physiol, 25: 695-700.
[17] Spallek, T., Mutuku, J. M., Shirasu, K. (2013). The genus Striga: a witch profile. Mol Plant Pathol, 14: 861-869.
[18] Mohamed, K. I., Musselman, L. J., Riches, C. R. (2001). The genus Striga (Scrophulariaceae) in Africa. Ann Mo Bot Gard, 88: 60-103.
[19] Haussmann, B. I. G., Hess, D. E., Welz, H. G., Geiger, H. H. (2000). Improved methodologies for breeding Striga-resistant sorghums. Field Crops Res, 66: 195-211.
[20] Botanga, C. J., Kling, J. G., Berner, D. K., Timko, M. P. (2002). Genetic variability of Striga asiatica (L.) Kuntz based on AFLP analysis and host-parasite interaction. Euphytica, 128: 375-388.
[21] Hamrick, J. (1982). Plant population genetics and evolution. Am J Bot, 69 (10): 1685-1693.
[22] Muchira, N., Ngugi, K., Wamalwa, L. N., Avosa, M., Chepkorir, W., et al. (2021). Genotypic variation in cultivated and wild sorghum genotypes in response to Striga hermonthica infestation. Front Plant Sci, 12: 671-984.
[23] Sugimoto, Y. (2000). Germination stimulants for the seeds of root parasitic weeds. J Pestic Sci, 25: 438-440.
[24] Parker, C. (2012). Parasitic weeds: a world challenge. Weed Sci, 60: 269-276.
[25] Gurney, A., Slate, J., Press, M., Scholes, J. (2006). A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol, 169: 199-208.
[26] Musselman, L. J. (1980). The biology of Striga, Orobanche, and other root-parasitic weeds. Annu Rev Phytopathol, 18: 463-489.
[27] Cardoso, C., Ruyter-Spira, C., Bouwmeester, H. J. (2011). Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci, 180: 414-420.
[28] Uematsu, K., Nakajima, M., Yamaguchi, I., Yoneyama, K., and Fukui, Y. (2007). Role of cAMP in gibberellin promotion of seed ger-mination in Orobanche minor (Smith). Journal of Plant Growth Regulation, 26: 245-254.
[29] Bouwmeester, H. J., Matusova, R., Sun, Z. K., Beale, M. H. (2003). Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol, 6: 358-364.
[30] Awad, A. A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y., et al. (2006). Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul, 48: 221-227.
[31] Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455: 195-200.
[32] Xie, X. N., Yoneyama, K., Yoneyama, K. (2010). The Strigolactone story. Annu Rev Phytopathol, 48: 93-117.
[33] Wang, Y., Bouwmeester, H. J. (2018). Structural diversity in the strigolactones. J Exp Bot, 69: 2219-2230.
[34] Cook, C. E., Whichard, L. P., Wall, M., Egley, G. H., Coggon, P., et al. (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem. Soc., 94: 6198-6199.
[35] Hauck, C., Muller, S., Schilknecht, H. (1992). A germination stimulant for parasitic plants from Sorghum bicolor, a genuine host plant. Plant Physiology, 139: 474-478.
[36] Bouwmeester, H., Li, C., Thiombiano, B., Rahimi, M., and Dong, L. (2021). Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant physiol, 185: 1292-1308.
[37] Yoshida, S., Cui, S., Ichihashi, Y., Shirasu, K. (2016). The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol, 67: 643-667.
[38] Losner-Goshen, D. (1998). Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot, 81: 319-326
[39] Albrecht, H., Yoder, J. I., Phillips, D. A. (1999). Flavonoids promote haustoria formation in the root parasite Triphysaria. Plant Physiol, 119: 585-591.
[40] Yamaguchi, I., Cohen, J. D., Culler, A. H., Quint, M., Slovin, J. P., et al. (2010). Plant hormones. Comprehensive Natural Products II Chemistry and Biology, 4: 9-125.
[41] Sibhatu, B. (2016). Review on Striga weed management. Int J Life Sci Scienti Res., 2: 110-120.
[42] Schulz, S., Hussaini, M. A., Kling, J. G., Berner, D. K., Ikie, F. O. (2003). Evaluation of integrated Striga hermonthica control tech-nologies under farmer management. Exp Agric., 39: 99-108.
[43] Oswald, A., Ransom, J. K. (2001). Striga control and improved farm productivity using crop rotation. Crop Prot., 20: 113-120.
[44] Oswald, A., Ransom, J. K., Kroschel, J., Sauerborn, J. (1999). Developing a catch-cropping technique for small-scale subsistence farmers. In: Kroschel J, Mercer-Quarshie H, Sauerborn J (eds.), Advances in Parasitic Weed Control at On-farm Level. Vol. 1.Joint action to Control Striga in Africa. Margraf Verlag, Weikersheim, Germany, pp. 181-187.
[45] Rao, M. R., Gacheru, E. (1998). Prospects of agroforestry Striga management. Agroforestry Forum, 9(2): 22-27.
[46] Gacheru, E., Rao, M. R. (2005). The potential of planted shurub fallows to combat striga infestation on maize. International Journal of Pest Management, 52: 91-100.
[47] Kanampiu, F., Makumbi, D., Mageto, E., Omanya, G., Waruingi, S., et al. (2018). Assessment of management options on striga infestation and maize grain yield in Kenya. Weed Science, 66: 516-524.
[48] Oswald, A., Ransom, J. K., Kroschel, J., Sauerborn, J. (2002). Intercropping controls striga in maize based farming systems. Crop Prot, 21: 367-374.
[49] Kuchinda, N. C., Kureh, I., Tarfa, B. D., Shinggu, C., Omolehin, R. (2003). On-farm evaluation of improved maize varieties intercropped with some legumes in the control of Striga in the Northern Guinea savanna of Nigeria. Crop Prot, 22: 533-538.
[50] Midega, C. A., Wasonga, C. J., Hooper, A. M., Pickett, J. A., Khan, Z. R. (2017). Drought-tolerant Desmodium species effectively suppress parasitic Striga weed and improve cereal grain yields in western Kenya. Crop Prot, 98: 94-101.
[51] Khan, Z. R., Pickett, J. A., Wadhams, L. J., Hassanali, A., Midega, C. A. O. (2008). Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Res., 48: 302-306.
[52] Midega, C. A. O., Salifu, D., Bruce, T. J., Pittchar, J., Pickett, J. A., et al. (2014). Cumulative effects and economic benefits of inter-cropping maize with food legumes on Striga hermonthica infestation. Field Crops Research, 155: 144-152.
[53] Vanlauwe, B., Ramisch, J. J., Sanginga, N. (2006). Integrated soil fertility management in Africa: from knowledge to implementation. Biol. Approaches Sustainable Soil Syst., 113: 257-272.
[54] Vanlauwe, B., Kanampiu, F., Odhiambo, G. D., De Groote, H., Wadhams, L. J., et al. (2008). Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Res., 107: 102-115.
[55] Adagba, M. A., Lagoke, S. T. O., Imolehin, E. D. (2002). Nitrogen effect on the incidence of Striga hermonthica (Del.) Benth in upland rice. Acta Agronomica Hungarica, 50: 145-150.
[56] Jamil, M., Charnikhova, T., Cardoso, C., Jamil, T., Ueno, K., Verstappen, F., Asami, T., Bouwmeester, H. J. (2011). Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res., 51: 373-385.
[57] Jamil, M., Kanampiu, F. K., Karaya, H., Charnikhova, T., Bouwmeester, H. J. (2012). Striga hermonthica parasitism in maize in response to N and P fertilizers. Field Crops Res., 134: 1-10.
[58] Odhiambo, G. D., Ransom, J. K. (1997). On-farm evaluation of an integrated approach to Striga control in western Kenya. African Crop Science Conference Proceedings Conference, 3: 887-893.
[59] Pare, J., Ouedraogo, B., Dembele, G., Salle, G., Raynal-Roques, A., et al. (1996). Embryological studies as an efficient strategy to control production of Striga seeds. In: Moreno MT, Cubero IT, Berner D, Joel DM, Musselman LJ, et al. (eds), Advances in Parasitic Plant Research. Proc. 6th Parasitic Weed Symposium. Cordoba, Spain. Pp. 203-209.
[60] Verkleij, J. A. C., Kuiper, E. (2000). Various approaches to controlling root parasitic weeds. Biotechnol Dev Monit, 41: 16-19.
[61] Makumbi, D., Kanampiu, F., Mugo, S., Karaya, H. (2015). Agronomic performance and genotype × environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Sci, 55: 540-555.
[62] Zwanenburg, B., Mwakaboko, A. S., Kannan, C. (2016). Suicidal ger‐mination for parasitic weed control. Pest Management Science, 72: 2016-2025.
[63] Eplee, R. E. (1975). Ethylene: A witchweed seed germination stimulant. Weed Science, 23: 433-436.
[64] Johnson, A. W., Roseberry, G., Parker, C. (1976). A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res., 16: 223-227.
[65] Rebeka, G., Shimelis, H., Laing, M. D., Tongoona, P., Mandefro, N. (2013). Evaluation of sorghum genotypes compatibility with Fu-sarium oxysporum under Striga infestation. Crop Sci, 53: 385-393.
[66] Ciotola, M., Ditommaso, A., and Watson, A. K. (2000). Chlamydospore production, inoculation methods and pathogenicity of Fusarium oxysporum M12-4A, a biocontrol for Striga hermonthica. Biocontrol Sci. Technol, 10: 129-145.
[67] Marley, P. S., Shebayan, J. A. Y. (2005). Field assessment of Fusarium oxysporum based mycoherbicide for control of Striga hermonthica in Nigeria. Biocontrol, 50: 398-399.
[68] Venne, J., Beed, F., Avocanhy, A., Watson, A. (2009). Integrating Fusarium oxysporum f. sp. strigae into cereal cropping systems in Africa. Pest Manag Sci., 65: 572-580.
[69] Schaub, B., Marley, P., Elzein, A., Kroschel, J. (2006). Field evaluation of an integrated Striga hermonthica management in Sub-Saharan Africa: synergy between Striga-mycoherbicides (biocontrol) and sorghum and maize resistant varieties. J Plant Dis Prot., 20: 691-699.
[70] Mandumbu, R., Mutengwa, C., Mabasa, S., Mwenje, E. (2019). Challenges to the exploitation of host plant resistance for Striga man-agement in cereals and legumes by farmers in sub-Saharan Africa: a review. Acta Agric Scand B Soil Plant Sci., 69: 82-88.
[71] Kim, S. K. (1994). Genetics of maize tolerance of Striga hermonthica. Crop Science, 34: 900-907.
[72] Amusan, I. O., Rich, P. J., Menkir, A., Housley, T., Ejeta, G. (2008). Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytologist, 178(1): 157-166.
[73] Mutinda, S. M., Masanga, J., Mutuku, J. M., Runo, S., Alakonya, A. (2018). KSTP 94, an open-pollinated maize variety has postattachment resistance to purple witchweed (Striga hermonthica). Weed Science, 66(4): 525-529.
[74] Fishman, M. R., Shirasu, K. (2021). How to resist parasitic plants: pre- and post-attachment strategies. Curr Opin Plant Biol, 62: 102004.
[75] Yoder, J. I., Scholes, J. D. (2010). Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr Opin Plant Biol., 13: 478-484.
[76] Karaya, H., Kiarie, N., Mugo, S., Kanampiu, F., Ariga, E., et al. (2012). Identification of new maize inbred lines with resistance to Striga hermonthica (Del.) Benth. J Crop Prot., 1 (2): 131-142.
[77] Yoneyama, K., Arakawa, R., Ishimoto, K., Kim, H. I., Kisugi, T., et al. (2015). Difference in Striga-susceptibility is reflected in strigo-lactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol, 206: 983-989.
[78] Rispail, N., Dita, M. A., Gonzalez-Verdejo, C., P´erez-de-Luque, A, Castillejo, M. A., et al. (2007). Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol, 173: 703-712.
[79] Adewale, S. A., Badu-Apraku, B., Akinwale, R. O., Paterne, A. A., Gedil, M., et al. (2020). Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. BMC Plant Biol., 20: 1-16.
[80] Kirigia, D., Runo, S., Alakonya, A. (2014). A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods, 10(16): 1-8.
[81] Joel, D. M. (2000). The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot, 19: 753-758.
[82] Mrema, E., Shimelis, H., Laing, M. (2020). Combining ability of yield and yield components among Fusarium oxysporum f. sp. Strigae-compatible and Striga-resistant sorghum genotypes. Acta Agric Scand B Soil Plant Sci., 70: 95-108.
[83] Kamara, A. Y., Menkir, A., Chikoye, D., Solomon, R., Tofa, A. I., Omoigui, L. O. (2020). Seed dressing maize with imazapyr to control Striga hermonthica in farmers’ fields in the savannas of Nigeria. Agriculture Basel, 10: 1-9.
[84] Abdallah, B., Saha, H., Tsanuo, M. (2015). Control of Striga asiatica through the integration of legume cover crops and Striga resistant maize. Int J Pure Appl Sci Technol, 29: 42-53.