References
[1] FAO. (2010). Managing forests for climate change. FAO, working with countries to tackle climate change through sustainable forest management. https://www.ignfa.gov.in/document/reading-material-managing-forests-for-climate-change-fao.pdf.
[2] Behera, S. K., Mishra, A. K., Sahu, N., Kumar, A., Singh, N., Kumar, A., and Tuli, R. (2012). The study of microclimate in response to different plant community association in the tropical moist deciduous forest from northern India. Biodiversity and Conservation, 21(5), 1159-1176.
[3] Bullock, S. H., Mooney, H. A., and Medina, E. (1995). Seasonally dry tropical forests. Cambridge University Press, pp. 439-450.
[4] Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., and Roberts, C. (2005). Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters, 8(1), 23-29.
[5] Gibbs, H. K., Brown, S., Niles, J. O., and Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023.
[6] Ordonez, C., Duinker, P. N., and Steenberg, J. (2010, June). Climate change mitigation and adaptation in urban forests: A framework for sustainable urban forest management. In Book of Abstracts of the 18th Commonwealth Forestry Conference, Edinburgh. Restoring the Commonwealth’s Forests: Tackling Climate Change, Edinburgh, Scotland, UK (Vol. 28).
[7] Safford, H., Larry, E., McPherson, E. G., Nowak, D. J., and Westphal, L. M. (2013). Urban Forests and Climate Change. US Department of Agriculture, Forest Service, Climate Change Resource Center. www. fs. usda. gov/ccrc/topics/urban-forests.
[8] Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., ... and Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391-398.
[9] Kumar, R. and Saikia, P. (2020). Forests Resources of Jharkhand, Eastern India: Socioeconomic and Bio-ecological Perspectives. In: Socio-economic and Eco-biological Dimensions in Resource use and Conservation-Strategies for Sustainability, Roy, N., Roychoudhury, S., Nautiyal, S., Agarwal, S. K., & Baksi, S. (eds.), Springer International Publishing, Switzerland, pp. 61-101. Available at: https://doi.org/10.1007/978-3-030-32463-6_4.
[10] Chaturvedi, R. K., Raghubanshi, A. S., and Singh, J. S. (2011). Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 262(8), 1576-1588.
[11] Ketterings, Q. M., Coe, R., Van Noordwijk, M., and Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209.
[12] Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., and Lescure, J. P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.
[13] Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M., Bongers, F., Zambrano, A. M. A., Aide, T. M., and Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639.
[14] Xiao, C. W. and Ceulemans, R. (2004). Allometric relationships for below-and aboveground biomass of young Scots pines. Forest Ecology and Management, 203(1-3), 177-186.
[15] Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest ecology and Management, 257(2), 427-434.
[16] Basuki, T. M., Van Laake, P. E., Skidmore, A. K., and Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest ecology and management, 257(8), 1684-1694.
[17] Vashum, K. T. and Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem & Ecography, 2(4), 1-7.
[18] Brown, S., Gillespie, A. J., and Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881-902.
[19] Brown, S. L., Schroeder, P., and Kern, J. S. (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123(1), 81-90.
[20] Rawat, D., Sati, S. P., Khanduri, V. P., Riyal, M., and Mishra, G. (2021). Carbon Sequestration Potential of Different Land Use Sectors of Western Himalaya. In Advances in Carbon Capture and Utilization (pp. 273-294). Springer, Singapore.
[21] Nagelkerken, I. S. J. M., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., and Somerfield, P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89(2), 155-185.
[22] Walters, B. B., Ronnback, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., and Dahdouh-Guebas, F. (2008). Ethnobiology, socio-economics, and management of mangrove forests: A review. Aquatic Botany, 89(2), 220-236.
[23] Whittaker, R. H. and Likens, G. E. (1975). The biosphere and man. In: Primary productivity of the biosphere, Springer, Berlin, Heidelberg, pp. 305-328.
[24] Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., and Ciais, P. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993.
[25] Zomer, R. J., Trabucco, A., Bossio, D. A., and Verchot, L. V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126(1-2), 67-80.
[26] Whittaker, R. H. and Linkens, G. E. (1973). Carbon in the biota. In Woodwell GM, Pecan EV, Carbon in the biosphere, Proceedings of the 24th Brookhaven Symposium in biology. Upton, New York: United States Atomic Energy Commission, 281-302.
[27] Thapa-Magar, K. B. and Shrestha, B. B. (2015). Carbon stock in community-managed hill Sal (Shorea robusta) forests of central Nepal. Journal of Sustainable Forestry, 34(5), 483-501.
[28] Kumar, R. and Saikia, P. (2020). Floristic analysis and dominance pattern of a Sal (Shorea robusta C. F. Gaertn.) Forests of Ranchi, Jharkhand, Eastern India. Journal of Forestry Research, 31(2), 415-427.
[29] FSI. (1996). Volume equations for forests of India, Nepal, and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Govt. of India, Dehradun.
[30] IPCC (Intergovernmental Panel on Climate Change). (2006). Guidelines for National Greenhouse gas inventories. Vol. 4. Agriculture, forestry and other land use (AFLOLU), Institute for Global Environmental Strategies, Kamiyamaguchi, Japan.
[31] Deka, J., Tripathi, O. P., and Khan, M. L. (2012). High dominance of Shorea robusta Gaertn. in alluvial plain Kamrup Sal forest of Assam, Northeastern India. International Journal of Ecosystem, 2(4), 67-73.
[32] Pandey, S. K. (2000). Population status and regeneration strategy of some perennial legumes in plantation forests of North-Eastern Uttar Pradesh. Ph. D. Thesis, DDU Gorakhpur University, Gorakhpur, India.
[33] Bajpai, O., Suman, S., and Upadhyay, N. (2017). Ecological exploration of Kuwana forest A tropical moist deciduous forest of eastern Terai, India. Annals of Plant Sciences, 6(12), 1811-1816.
[34] Shankar, U. (2001). A case of high tree diversity in a Sal (Shorea robusta) dominated lowland forest of Eastern Himalaya: Floristic composition, regeneration, and conservation. Current Science, 81(7), 776-786.
[35] Kushwaha, S. P. S. and Nandy, S. (2012). Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodiversity and Conservation, 21(5), 1215-1228.
[36] Mishra, R. K., Parhi, S. and Biswal, A. K. (2018). Diversity of overstorey plant communities of tropical forest covers of Balasore district, Odisha, India. Advances in Plants & Agriculture Research, 8(1), 20-26.
[37] Rahman, M. H., Fardusi, M. J., and Reza, M. S. (2011). Traditional knowledge and use of medicinal plants by the Patra tribe community in the North-Eastern region of Bangladesh. Proceedings of the Pakistan Academy of Sciences, 48(3), 159-167.
[38] Sahu, S. C., Dhal, N. K., and Mohanty, R. C. (2012). Tree species diversity, distribution, and population structure in a tropical dry deciduous forest of Malyagiri hill ranges, Eastern Ghats, India. Tropical Ecology, 53(2), 163-168.
[39] Tarakeswara Naidu, M., Premavani, D., Suthari, S., and Venkaiah, M. (2018). Assessment of tree diversity in tropical deciduous forests of Northcentral Eastern Ghats, India. Geology, Ecology, and Landscapes, 2(3), 216-227.
[40] Naidu, M. T. and Kumar, O. A. (2016). Tree diversity, stand structure, and community composition of tropical forests in Eastern Ghats of Andhra Pradesh, India. Journal of Asia-Pacific Biodiversity, 9(3), 328-334.
[41] Sahoo, T., Acharya, L., and Panda, P. C. (2020). Structure and composition of tree species in tropical moist deciduous forests of Eastern Ghats of Odisha, India, in response to human-induced disturbances. Environmental Sustainability, 3, 1-14.
[42] Daly, R., Stevens, G., and Daly, C. K. (2018). Rapid marine biodiversity assessment records 16 new marine fish species for Seychelles, West Indian Ocean. Marine Biodiversity Records, 11(1), 6.
[43] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439.
[44] Cao, Y. and Hawkins, C. P. (2019). Weighting an effective number of species measures by abundance weakens the detection of diversity responses. Journal of Applied Ecology, 56(5), 1200-1209.
[45] Whittaker, R. H. (1965). Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science, 147(3655), 250-260.
[46] Odum, E. P. (1971). Fundamentals of Ecology. 3rd Edn. , WB Saunders Co., Philadelphia, Pennsylvania.
[47] Terakunpisut, J., Gajaseni, N., and Ruankawe, N. (2007). Carbon sequestration potential in aboveground biomass of Thong Pha Phum national forest, Thailand. Applied Ecology and Environmental Research, 5(2), 93-102.
[48] Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S. K., and Suyal, S. (2011). Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of Biosciences, 36(4), 701-708.
[49] Zhao, J., Kang, F., Wang, L., Yu, X., Zhao, W., Song, X., and Han, H. (2014). Patterns of biomass and carbon distribution across a Chrono sequence of Chinese pine (Pinus tabulaeformis) forests. PloS one, 9(7), e104464.
[50] Baishya, R., Barik, S. K., and Upadhaya, K. (2009). Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Tropical Ecology, 50(2), 295-304.
[51] Gautam, M. K., Tripathi, A. K., and Manhas, R. K. (2011). Assessment of critical loads in tropical Sal (Shorea robusta Gaertn. f.) forests of Doon Valley Himalayas, India. Water, Air, & Soil Pollution, 218(1-4), 235-264.
[52] Shrestha, R., Karmacharya, S. B., and Jha, P. K. (2000). Vegetation analysis of natural and degraded forests in Chitrepani in Siwalik region of Central Nepal. Tropical Ecology, 41(1), 111-114.
[53] Ranawat, M. P. S. and Vyas, L. N. (1975). Litter production in deciduous forests of Koriyat, Udaipur (South Rajasthan), India. Biologia, 30, 41-47.
[54] Singh, K. P. and Singh, R. P. (1981). Seasonal variation in biomass and energy of small roots in tropical dry deciduous forest, Varanasi, India. Oikos, 37(1), 88-92.
[55] Negi, M. S., Tandon, Y. N., and Rawat, H. S. (1995). Biomass and nutrient distribution in young teak (Tectona grandis Linn. f) plantations in Tarai region of Uttar Pradesh. Indian Forester, 121(6), 455-464.
[56] Salunkhe, O., Khare, P. K., Sahu, T. R., and Singh, S. (2016). Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach. Tropical Ecology, 57(2), 153-161.