References
[1] Elzoghby, A., Samy, W., Elgindy, N. (2012). Protein-based nanocarriers as promising drug and gene delivery systems. Journal of Control Release, 2012, 161: 38-49.
[2] Yadav, D., Suri, S., Choudhary, A. A., Sikander, M., Hemant, B. N. M. (2011). Novel approach: herbal remedies and natural products in pharmaceutical science as nano-drug delivery systems. International Journal of Pharmaceutical Technology, 2011, 3: 3092-3116.
[3] De Jong, W. H., Borm, P. J. A. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008, 3: 133-149.
[4] Gupta, V. K., Karar, P. K., Ramesh, S., Misra, S. P., Gupta, A. (2010). Nanoparticle formulation for hydrophilic and hydrophobic drugs. International Journal of Pharmaceutical Science and Research, 2010, 1: 163-169.
[5] Moom, S. A., Jonas, A., Losic, D. (2012). Multi-drug delivery system with sequential release using titania nanotube arrays. Chemistry Communication, 2012, 48: 3348-3350.
[6] Kumari, A., Kumar, V., Yadav, S. K. (2012). Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends in Medical Research, 2012, 7: 34-42.
[7] Narayanan, K. B., Sakthivel, N. (2011). Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid Interface Science, 2011, 169: 59-79.
[8] Christophe, H., Abbasi, B. H. (2022). Plant-Based green synthesis of nanoparticles: production, characterization and applications. Biomolecules, 2022, 12: 31-37.
[9] Kuppusamy, P., Yusoff, M. M., Maniam, G. P., Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharmaceutical Journal, 2016, 24: 473-484.
[10] Vanaja, M., Paulkumar, K., Gnanajobitha, G., Rajeshkumar, S., Malarkodi, C., Annadurai, G. (2014). Herbal Plant Synthesis of Anti-bacterial Silver Nanoparticles by Solanum trilobatum and Its Characterization. International Journal of Metals, 2014, 2014: 692461.
[11] Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011, 13: 2638-2650.
[12] Kharissova, O. V., Dias, H. V., Kharisov, B. I., Perez, B. O., Perez, V. M. (2013). Trends in Biotechnology. 2013, 31: 240-248.
[13] Parvez, M. K., Parveen, S. (2017). Evolution and emergence of pathogenic viruses: Past, Present, and Future. Intervirology, 2017, 60: 1-7.
[14] Parvez, M. K., Jagirdar, R. M., Purty, R. S., Venkata, S. K. S., Agrawal, V., Kumar, J., Tiwari, N. (2020). COVID-19 pandemic: understanding the emergence, pathogenesis and containment. World Academy of Sciences Journal, 2020, 2: 18.
[15] Chattopadhyay, D., Sarkar, M. C., Chatterjee, T., Dey, R. K., Bag, P., Chakraborti, S., Khan, M. T. H. (2009). Recent advancements for the evaluation of antiviral activities of natural products. Natural Biotechnology, 2009, 25: 347-368.
[16] Parvez, M. K., Arab, A. H., Al-Dosari, M. S., Al-Rehaily, A. J. (2016). Antiviral natural products against chronic hepatitis B: recent developments. Current Pharmaceutical Design, 2016, 3: 286-293.
[17] Thomas, E., Stewart, L. E., Darley, B. A., Pham, A. M., Esteban, I., Panda, S. S. (2021). Plant-Based Natural Products and Extracts: Potential Source to Develop New Antiviral Drug Candidates. Molecules, 2021, 26: 6197.
[18] Yang, X. X., Li, C. M., Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 2016, 8: 3040-3048.
[19] Papp, I., Sieben, C., Ludwig, K., Roskamp, M., Bottcher, C., Schlecht, S., Herrmann, A., Haag, R. (2006). Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small, 2006, 6: 2900-2906.
[20] Wei, J. H., Zheng, L. T., Lv, X., Bi, Y. H., Chen, W. W., Zhang, W., Shi, Y., Zhao, L., Sun, X., Wang, F., Cheng, S., Yan, J., Liu, W., Jiang, X., Gao, G. F., Li, X. Analysis of influenza virus receptor specificity using glycan-functionalized gold nanoparticles. ACS Nano, 2014, 8: 4600-4607.
[21] Fu, J., Wang, Z., Huang, L., Zheng, S., Wang, D., Chen, S., Zhang, H., Yang, S. (2014). Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytherapy Research, 2014, 28: 1275-1283.
[22] Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J. P., Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied Microbiology and Biotechnology, 2019, 103: 881-891.
[23] Haggag, E. G., Elshamy, A. M., Rabeh, M. A., Gabr, N. M., Salem, M., Youssif, K. A., Samir, A., Bin Muhsinah, A., Alsayari, A., Abdelmohsen, U. R. (2019). Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. International Journal of Nanomedicine, 2019, 14: 6217-6229.