Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / Advance in Biological Research /

DOI:http://dx.doi.org/10.26855/abr.2022.03.001

Herb-Synthesized Antiviral Nanoparticles

Date: March 14,2022 |Hits: 875 Download PDF How to cite this paper

Mohammad K. Parvez1,*, Sarfaraz Ahmed1, Sakina Niyazi2

1Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

2Pavilion Heights-4, Jaypee Green Wishtown, Sector-128, Noida, Uttar Pradesh, India.

*Corresponding author: Mohammad K. Parvez

Abstract

In recent times, nanomedicine has effectively addressed the poor delivery, solubility, absorption or cytotoxicity issues of conventional and herbal drugs. Several herbals or bioactive metabolites because of their ability to efficiently reduce and stabilize metal ions have been exploited as herb-synthesized gold and silver nanoparticles. Outbreaks of pathogenic viruses cause significant morbidity and mortality, worldwide. Of these, the novel SARS-Coronavirus-2 disease (COVID-19) remains the most devastating pandemic ever. In view of this, herbal gold and silver nanoparticles have been developed as antiviral drug-delivery carriers against Human immunodeficiency virus, Herpes virus, Influenza virus, Dengue virus, Chikungunya virus and Hepatitis B virus etc. Notable examples include Astragalus membranaceus, Tinospora cordifolia, Phyllanthus niruri, Andrographis paniculate, Lampranthus coccineus and Malephora lutea synthesized antiviral nanoparticles. Although further studies have shown that such herbal-synthesized nanoparticles could enter the target cells and inhibit virus replication, their interactions with different cell types and the specific mechanism of antiviral activities still remain inconclusive.

References

[1] Elzoghby, A., Samy, W., Elgindy, N. (2012). Protein-based nanocarriers as promising drug and gene delivery systems. Journal of Control Release, 2012, 161: 38-49.

[2] Yadav, D., Suri, S., Choudhary, A. A., Sikander, M., Hemant, B. N. M. (2011). Novel approach: herbal remedies and natural products in pharmaceutical science as nano-drug delivery systems. International Journal of Pharmaceutical Technology, 2011, 3: 3092-3116.

[3] De Jong, W. H., Borm, P. J. A. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008, 3: 133-149.

[4] Gupta, V. K., Karar, P. K., Ramesh, S., Misra, S. P., Gupta, A. (2010). Nanoparticle formulation for hydrophilic and hydrophobic drugs. International Journal of Pharmaceutical Science and Research, 2010, 1: 163-169.

[5] Moom, S. A., Jonas, A., Losic, D. (2012). Multi-drug delivery system with sequential release using titania nanotube arrays. Chemistry Communication, 2012, 48: 3348-3350.

[6] Kumari, A., Kumar, V., Yadav, S. K. (2012). Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends in Medical Research, 2012, 7: 34-42.

[7] Narayanan, K. B., Sakthivel, N. (2011). Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid Interface Science, 2011, 169: 59-79.

[8] Christophe, H., Abbasi, B. H. (2022). Plant-Based green synthesis of nanoparticles: production, characterization and applications. Biomolecules, 2022, 12: 31-37.

[9] Kuppusamy, P., Yusoff, M. M., Maniam, G. P., Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharmaceutical Journal, 2016, 24: 473-484. 

[10] Vanaja, M., Paulkumar, K., Gnanajobitha, G., Rajeshkumar, S., Malarkodi, C., Annadurai, G. (2014). Herbal Plant Synthesis of Anti-bacterial Silver Nanoparticles by Solanum trilobatum and Its Characterization. International Journal of Metals, 2014, 2014: 692461.

[11] Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011, 13: 2638-2650.

[12] Kharissova, O. V., Dias, H. V., Kharisov, B. I., Perez, B. O., Perez, V. M. (2013). Trends in Biotechnology. 2013, 31: 240-248.

[13] Parvez, M. K., Parveen, S. (2017). Evolution and emergence of pathogenic viruses: Past, Present, and Future. Intervirology, 2017, 60: 1-7.

[14] Parvez, M. K., Jagirdar, R. M., Purty, R. S., Venkata, S. K. S., Agrawal, V., Kumar, J., Tiwari, N. (2020). COVID-19 pandemic: understanding the emergence, pathogenesis and containment. World Academy of Sciences Journal, 2020, 2: 18.

[15] Chattopadhyay, D., Sarkar, M. C., Chatterjee, T., Dey, R. K., Bag, P., Chakraborti, S., Khan, M. T. H. (2009). Recent advancements for the evaluation of antiviral activities of natural products. Natural Biotechnology, 2009, 25: 347-368.

[16] Parvez, M. K., Arab, A. H., Al-Dosari, M. S., Al-Rehaily, A. J. (2016). Antiviral natural products against chronic hepatitis B: recent developments. Current Pharmaceutical Design, 2016, 3: 286-293.

[17] Thomas, E., Stewart, L. E., Darley, B. A., Pham, A. M., Esteban, I., Panda, S. S. (2021). Plant-Based Natural Products and Extracts: Potential Source to Develop New Antiviral Drug Candidates. Molecules, 2021, 26: 6197. 

[18] Yang, X. X., Li, C. M., Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 2016, 8: 3040-3048.

[19] Papp, I., Sieben, C., Ludwig, K., Roskamp, M., Bottcher, C., Schlecht, S., Herrmann, A., Haag, R. (2006). Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small, 2006, 6: 2900-2906.

[20] Wei, J. H., Zheng, L. T., Lv, X., Bi, Y. H., Chen, W. W., Zhang, W., Shi, Y., Zhao, L., Sun, X., Wang, F., Cheng, S., Yan, J., Liu, W., Jiang, X., Gao, G. F., Li, X. Analysis of influenza virus receptor specificity using glycan-functionalized gold nanoparticles. ACS Nano, 2014, 8: 4600-4607.

[21] Fu, J., Wang, Z., Huang, L., Zheng, S., Wang, D., Chen, S., Zhang, H., Yang, S. (2014). Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytherapy Research, 2014, 28: 1275-1283. 

[22] Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J. P., Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied Microbiology and Biotechnology, 2019, 103: 881-891.

[23] Haggag, E. G., Elshamy, A. M., Rabeh, M. A., Gabr, N. M., Salem, M., Youssif, K. A., Samir, A., Bin Muhsinah, A., Alsayari, A., Abdelmohsen, U. R. (2019). Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. International Journal of Nanomedicine, 2019, 14: 6217-6229.

How to cite this paper

Herb-Synthesized Antiviral Nanoparticles

How to cite this paper: Mohammad K. Parvez, Sarfaraz Ahmed, Sakina Niyazi. (2022) Herb-Synthesized Antiviral Nanoparticles. Advance in Biological Research3(1), 8-10.

DOI: http://dx.doi.org/10.26855/abr.2022.03.001

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.