References
[1] Almaktar, M., et al. (2015). Artificial neural network‐based photovoltaic module temperature estimation for tropical climate of Malaysia and its impact on photovoltaic system energy yield. Progress in Photovoltaics: Research and Applications, 2015. 23(3): 302-318.
[2] De Leone, R., M. Pietrini, and A. Giovannelli. (2015). Photovoltaic energy production forecast using support vector regression. Neural Computing and Applications, 2015, 26(8): 1955-1962.
[3] Ibrahim, S., et al. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 2012, 18: 1402-1412.
[4] Rizwan, M., et al. (2014). Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy, 2014, 70: 685-691.
[5] Wang, G., Y. Su, and L. Shu. (2016). One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models. Renewable Energy, 2016, 96: 469-478.
[6] Kanwal, S., et al. (2018). Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system. Renewable Energy, 2018, 126: 865-875.
[7] Di Piazza, M. C., A. Ragusa, and G. Vitale. (2009). Identification of photovoltaic array model parameters by robust linear regression methods. In International Conference on Renewable Energies and Power Quality (ICREPQ'09). 2009.
[8] Khan, S. A., et al. (2021). Chaos Induced Coyote Algorithm (CICA) for Extracting the Parameters in a Single, Double, and Three Diode Model of a Mono-Crystalline, Polycrystalline, and a Thin-Film Solar PV Cell. Electronics, 2021, 10(17): 2094.
[9] Mdzinarishvili, T., et al. (2020). Determination of the solar rotation parameters via orthogonal polynomials. Advances in Space Research, 2020, 65(7): 1843-1851.
[10] Kabir, F., et al. (2019). Estimation of behind-the-meter solar generation by integrating physical with statistical models. In 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). 2019. IEEE.
[11] Mouatasim, A. E. and Y. Darmane. (2018). Regression analysis of a photovoltaic (PV) system in FPO. In AIP Conference Proceedings. 2018. AIP Publishing LLC.
[12] Thomopoulos, N. T. (2012). Essentials of Monte Carlo simulation: Statistical methods for building simulation models. 2012: Springer Science & Business Media.
[13] Bird, G. (1981). Monte-Carlo simulation in an engineering context. Progress in Astronautics and Aeronautics, 1981, 74: 239-255.