International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 131820 Total View: 2348226
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3

A Review between Climate Smart Agriculture Technology Objectives’ Synergies and Tradeoffs

Petros Chavula

1Africa Center of Excellence for Climate Smart Agriculture and Biodiversity Conservation and Management, P. O. Box 138, Haramaya, Oromia, Ethiopia. 

2Department of Climate-Smart Agriculture, Haramaya University, Haramaya, Oromia, Ethiopia.

*Corresponding author: Petros Chavula

Published: December 20,2021


Climate variability and extremes are now a part of everyday life around the planet. Climate change has a significant impact on the poor and vulnerable in various parts of the world. Climate variability and change have exacerbated the miseries of the impoverished in various parts of the world, including the well-to-do. As a result, several stakeholders around the world have created and executed climate change adaptation and mitigation programs. These projects and/or programs seek to mitigate the effects of climate change on the environment, specifically on humans. Projects have mostly targeted the least developed countries (LDCs) and disadvantaged households who are affected by climate change variability (smallholder farmers). Farmers in smallholdings have been encouraged to implement these projects on their land. Furthermore, some governments have implemented policies aimed at accomplishing the aims of climate smart agriculture. There are synergies and trade-offs between these actions for accomplishing climate smart agriculture’s goals (e.g. rotational grazing system for cattle, agroforestry adoption, integrated-cattle soybean production, and biotechnology promotion has showed higher food production and lower greenhouse gas emission). Lack of interest, inadequate policies, and a scarcity of land for rotation grazing, reduced productivity, and worse financial returns are only a few of the trade-offs of these interventions. As a result, via the development of appropriate strategies and regulations, climate smart agriculture aims to eliminate trade-offs and increase synergies. For higher production and guaranteed sustainability, these policies should attempt to promote synergies in crop production, animal production systems, forests, fisheries, and aquaculture. Climate-smart agriculture is not a brand-new farming method or collection of activities.


[1] Intergovernmental Panel on Climate Change, “Assessing Transformation Pathways,” Clim. Chang. 2014 Mitig. Clim. Chang., pp. 413-510, 2015, doi: 10.1017/cbo9781107415416.012.

[2] M. Jarraud and A. Steiner. (2012). Summary for policymakers, vol. 9781107025066. 2012.

[3] A. Haro, A. Mendoza-Ponce, Ó. Calderón-Bustamante, J. A. Velasco, and F. Estrada. (2021). “Evaluating Risk and Possible Adaptations to Climate Change Under a Socio-Ecological System Approach,” Front. Clim., vol. 3, no. June, pp. 1-16, 2021, doi: 10.3389/fclim.2021.674693.

[4] S. M. Howden, J.-F. Soussana, F. N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, “Adapting Agriculture to Climate Change: Preparing Austrailia,” Pnas, vol. 104, no. 50, pp. 19691-19696, 2007, [Online]. Available:

[5] S. Asfaw and L. Lipper. (2011). “Economics of pgrfa management for adaptation to climate change: a review of selected literature,” Comm. Genet. Resour. Food Agric., no. Background Study Paper No. 60, pp. 1-25, 2011.

[6] W. E. Easterling, et al. (2007). “Food, fibre and forest products,” Clim. Chang. 2007 Impacts, Adapt. Vulnerability. Contrib. Work. Gr. II to Fourth Assess. Rep. Intergov. Panel Clim. Chang., pp. 273-313, 2007.

[7] D. Khadka and D. Pathak. (2016). “Climate change projection for the marsyangdi river basin, Nepal using statistical downscaling of GCM and its implications in geodisasters,” Geoenvironmental Disasters, vol. 3, no. 1, 2016, doi: 10.1186/s40677-016-0050-0.

[8] P. Nkala, N. Mango, M. Corbeels, G. J. Veldwisch, and J. Huising. (2011). “The conundrum of conservation agriculture and livelihoods in Southern Africa,” African J. Agric. Res., vol. 6, no. 24, pp. 5520-5528, 2011, doi: 10.5897/AJAR10.030.

[9] R. Mendelsohn. (2000). “Efficient adaptation to climate change,” Clim. Change, vol. 45, no. 3-4, pp. 583-600, 2000, doi: 10.1023/a:1005507810350.

[10] C. L. Holt. (1994). “Effectiveness of a multicultural education unit on the cultural sensitivity of undergraduate hospitality students,” Hosp. Tour. Educ., vol. 6, no. 3, pp. 75-75, 1994, doi: 10.1080/23298758.1994.10685604.

[11] R. S. J. Tol. (2008). “Why worry about climate change? A research agenda,” Environ. Values, vol. 17, no. 4, pp. 437-470, 2008, doi: 10.3197/096327108X368485.

[12] T. Status, C. Agriculture, and S. Africa. (2010). “The Status of Conservation Agriculture in Southern Africa : Challenges and Opportunities for Expansion Africa’ s level of CA practice,” pp. 1-6, 2010.

[13] C. A. Harvey, et al. (2014). “Climate-Smart Landscapes : Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture,” vol. 7, no. April, pp. 77-90, 2014, doi: 10.1111/conl.12066.

[14] B. R. Baral, T. W. Kuyper, and J. W. Van Groenigen. (2014). “Liebig’s law of the minimum applied to a greenhouse gas: Alleviation of P-limitation reduces soil N2O emission,” Plant Soil, vol. 374, no. 1-2, pp. 539-548, 2014, doi: 10.1007/s11104-013-1913-8.

[15] S. Agriculture and C. Change. (2003). “GHB-abstinens,” Lakartidningen, vol. 100, no. 46, p. 3776, 2003.

[16] S. S. Yadav, R. J. Redden, J. L. Hatfield, A. W. Ebert, and D. Hunter, “Food Security and Climate Change,” Food Secur. Clim. Chang., no. June, 2018, doi: 10.1002/9781119180661.

[17] D. P. Van Vuuren, et al. (2007). “Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs,” Clim. Change, vol. 81, no. 2, pp. 119-159, 2007, doi: 10.1007/s10584-006-9172-9.

[18] Intergovernmental Panel on Climate Change (IPCC). (2018). “Summary for Policymakers. In: Global Warming of 1,5° C,” Intergov. Panel Clim. Chang., pp. 1-24, 2018, [Online]. Available:

[19] T. R. Society. (2021). “Climate change and global warming: Impacts on crop production,” Genet. Modif. Plants, pp. 283-296, 2021, doi: 10.1016/b978-0-12-818564-3.09991-1.

[20] J. L. Hatfield, et al. (2011). “Climate impacts on agriculture: Implications for crop production,” Agron. J., vol. 103, no. 2, pp. 351-370, 2011, doi: 10.2134/agronj2010.0303.

[21] J. L. Hatfield and J. H. Prueger. (2015). “Temperature extremes: Effect on plant growth and development,” Weather Clim. Extrem., vol. 10, pp. 4-10, 2015, doi: 10.1016/j.wace.2015.08.001.

[22] I. Lowe. (1996). “Greenhouse gas mitigation: Policy options,” Energy Convers. Manag., vol. 37, no. 6-8, pp. 741-746, 1996, doi: 10.1016/0196-8904(95)00249-9.

[23] E. Kistner, O. Kellner, J. Andresen, D. Todey, and L. W. Morton. (2018). “Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA,” Clim. Change, vol. 146, no. 1-2, pp. 145-158, 2018, doi: 10.1007/s10584-017-2066-1.

[24] C. L. Authors, et al. (2013). “NCAJan11-2013-publicreviewdraft-chap6-agriculture,” pp. 1-35, 2013, [Online]. Available: pa-pers2://publication/uuid/992FEB90-9075-443F-BCDC-EDD29A1B6F96.

[25] J. E. Doll, B. Petersen, and C. Bode. (2017). “Skeptical but adapting: What Midwestern farmers say about climate change,” Weather. Clim. Soc., vol. 9, no. 4, pp. 739-751, 2017, doi: 10.1175/WCAS-D-16-0110.1.

[26] A. B. O. U. T. B. I. G. F. A. C. Ts. (2013). “Climate impacts on production,” pp. 2009-2011, 2013.

[27] O. B. Chijioke, M. Haile, and C. Waschkeit. (2011). “Implication of Climate Change on Crop Yield and Food Accessibility in Sub-Saharan Africa,” ZEF Cent. Res. Dev., pp. 1-31, 2011.

[28] S. P. Dhoubhadel, F. Taheripour, and M. C. Stockton. (2016). “Livestock Demand, Global Land Use Changes, and Induced Greenhouse Gas Emissions,” J. Environ. Prot. (Irvine,. Calif)., vol. 07, no. 07, pp. 985-995, 2016, doi: 10.4236/jep.2016.77087.

[29] CIAT and World Bank. (2017). “Climate-Smart Agriculture in Zambia,” CSA Ctry. Profiles Africa Ser., 2017, [Online]. Available:

[30] D. J. Abson, E. D. G. Fraser, and T. G. Benton. (2013). “Landscape diversity and the resilience of agricultural returns: A portfolio analysis of land-use patterns and economic returns from lowland agriculture,” Agric. Food Secur., vol. 2, no. 1, p. 1, 2013, doi: 10.1186/2048-7010-2-2.


[32] J. M. Adams, et al. (2017). “The Landlab v1.0 OverlandFlow component: A Python tool for computing shallow-water flow across watersheds,” Geosci. Model Dev., vol. 10, no. 4, pp. 1645-1663, 2017, doi: 10.5194/gmd-10-1645-2017.

[33] G. E. Stout. (1990). Climate and water, vol. 71, no. 12. 1990.

[34] S. Franzel, P. Cooper, G. L. Denning, and D. Eade, “and Agroforestry Development,” no. 119119.

[35] A. Arslan, N. Mccarthy, L. Lipper, S. Asfaw, A. Cattaneo, and M. Kokwe. (2015). “Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia,” J. Agric. Econ., vol. 66, no. 3, pp. 753-780, 2015, doi: 10.1111/1477-9552.12107.

[36] I. K. Odubote and O. C. Ajayi. (2020). “Scaling Up Climate-Smart Agricultural (CSA) Solutions for Smallholder Cereals and Livestock Farmers in Zambia,” Handb. Clim. Chang. Resil., pp. 1115-1136, 2020, doi: 10.1007/978-3-319-93336-8_109.

[37] O. C. Ajayi, F. Place, F. K. Akinnifesi, and G. W. Sileshi. (2011). “Agricultural success from Africa: The case of fertilizer tree systems in Southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe),” Int. J. Agric. Sustain., vol. 9, no. 1, pp. 129-136, 2011, doi: 10.3763/ijas.2010.0554.

[38] K. Calvin, et al. (2021). “Bioenergy for climate change mitigation: Scale and sustainability,” GCB Bioenergy, vol. 13, no. 9, pp. 1346-1371, 2021, doi: 10.1111/gcbb.12863.

[39] G. Fischer, M. M. Shah, and H. T. Van Velthuizen. (2002). “Climate change and agricultural vulnerability,” 2002.

[40] M. Mwangi and S. Kariuki. (2015). “Factors Determining Adoption of New Agricultural Technology by Smallholder Farmers in Developing Countries,” Issn, vol. 6, no. 5, pp. 2222-1700, 2015, [Online]. Available:

[41] E. Edward. (2009). “,” 2009.

[42] C. Mwema and W. Crewett. (2019). “Social Networks and Commercialisation of African Indigenous Vegetables in Kenya: A Cragg’s Double Hurdle Approach,” Cogent Econ. Financ., vol. 7, no. 1, 2019, doi: 10.1080/23322039.2019.1642173.

[43] T. Lavers. (2018). “Responding to land-based conflict in Ethiopia: The land rights of Ethnic minorities under federalism,” Afr. Aff. (Lond)., vol. 117, no. 468, pp. 462-484, 2018, doi: 10.1093/afraf/ady010.

[44] A. Krause, et al. “Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators.”

[45] B. C. Ringler, Z. Karelina, and R. Pandya-lorch. (2020). “Energy Water,” pp. 1-9, 2020.

[46] T. T. Deressa, R. M. Hassan, and C. Ringler. (2011). “Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia,” J. Agric. Sci., vol. 149, no. 1, pp. 23-31, 2011, doi: 10.1017/S0021859610000687.

How to cite this paper

A Review between Climate Smart Agriculture Technology Objectives' Synergies and Tradeoffs

How to cite this paper: Petros Chavula. (2021) A Review between Climate Smart Agriculture Technology Objectives' Synergies and Tradeoffs. International Journal of Food Science and Agriculture5(4), 748-753.