References
[1] A. Hassoun, A. Aït-Kaddour, A. Sahar, and D. Cozzolino. (2021). Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: a Review of Advances over the Last Decade. Food Bioprocess Technol., vol. 14, no. 2, pp. 195-208, doi: 10.1007/s11947-020-02510-0.
[2] A. Y. Khaled, C. A. Parrish, and A. Adedeji. (2021). Emerging nondestructive approaches for meat quality and safety evaluation—A review. Compr. Rev. Food Sci. Food Saf., vol. 20, no. 4, pp. 3438-3463, doi: 10.1111/1541-4337.12781.
[3] M. Kamruzzaman, Y. Makino, and S. Oshita. (2016). Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng., vol. 170, pp. 8-15, doi: 10.1016/j.jfoodeng.2015.08.023.
[4] S. Grassi, E. Casiraghi, and C. Alamprese. (2018). Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties, vol. 243.
[5] A. López-maestresalas. (2018). Detection of minced lamb and beef fraud using NIR spectroscopy, doi: 10.1016/j.foodcont.2018.12.003.
[6] G. P. and A. W. Dominika Guzek, Dominika Głąbska, and Ewelina Pogorzelska. (2013). Instrumental Texture Measurement of Meat in a Laboratory Research and on a Production Line, Adv. Sci. Technol.-Res. J., vol. 7, no. 19, pp. 5-11, doi: 10.5604/20804075.1062329.
[7] M. O. Soodabeh Fatahia and Y. M. Amin Taheri-Garavanda. (2019). Meat quality evaluation based on computer vision technique: A review, Meat Sci., vol. 156, no. June, pp. 183-195, doi: 10.1016/j.meatsci.2019.06.002.
[8] Y. Peng and S. Dhakal. (2015). Optical methods and techniques for meat quality inspection, Trans. ASABE, vol. 58, no. 5, pp. 1371-1386, doi: 10.13031/trans.58.11004.
[9] Z. Xiong, A. Xie, D. W. Sun, X. A. Zeng, and D. Liu. (2015). Applications of Hyperspectral Imaging in Chicken Meat Safety and Quality Detection and Evaluation: A Review, Crit. Rev. Food Sci. Nutr., vol. 55, no. 9, pp. 1287-1301, doi: 10.1080/10408398.2013.834875.
[10] D. Du, J. Wang, B. Wang, L. Zhu, and X. Hong. (2019). Ripeness prediction of postharvest Kiwifruit using a MOS E-nose combined with chemometrics, Sensors (Switzerland), vol. 19, no. 2, doi: 10.3390/s19020419.
[11] J. Sujiwo, H. J. Kim, S. O. Song, and A. Jang. (2019). Relationship between quality and freshness traits and torrymeter value of beef loin during cold storage, Meat Sci., vol. 149, pp. 120-125, doi: 10.1016/j.meatsci.2018.11.017.
[12] Z. F. Bhat, J. D. Morton, S. L. Mason, and A. E. D. A. Bekhit. (2019). Does pulsed electric field have a potential to improve the quality of beef from older animals and how? Innov. Food Sci. Emerg. Technol., vol. 56, no. April, p. 102194, doi: 10.1016/j.ifset.2019.102194.
[13] P. Pophiwa, E. C. Webb, and L. Frylinck. (2020). A review of factors affecting goat meat quality and mitigating strategies, Small Rumin. Res., vol. 183, p. 106035, doi: 10.1016/j.smallrumres.2019.106035.
[14] W. Jia, G. Liang, Y. Wang, and J. Wang. (2018). Electronic Noses as a Powerful Tool for Assessing Meat Quality: a Mini Review, Food Anal. Methods, vol. 11, no. 10, pp. 2916-2924, doi: 10.1007/s12161-018-1283-1.
[15] C. Ruiz-capillas, A. M. Herrero, T. Pintado, and G. Delgado-pando. (2021). Sensory Analysis and Consumer Research in New Meat Products Development.
[16] H. T. Lawless and H. Heymann. (2010). Sensory evaluation of food: principles of good practice.
[17] O. Segun. (2007). Sensory Evaluation Techniques, 18th Annu. IAOM Conf. (MEA Dist. Muscat-Oman.
[18] G. Luciano and T. Næs. (2009). Interpreting sensory data by combining principal component analysis and analysis of variance, Food Qual. Prefer., vol. 20, no. 3, pp. 167-175, doi: 10.1016/j.foodqual.2008.08.003.
[19] K. Verplanken, J. Wauters, V. Vercruysse, M. Aluwé, and L. Vanhaecke. (2017). Sensory evaluation of boartaint-containing minced meat, dry-cured ham and dry fermented sausage by a trained expert panel and consumers, Food Chem., vol. 233, pp. 247-255, doi: 10.1016/j.foodchem.2017.04.105.
[20] F. D. Mihafu, J. Y. Issa, and M. W. Kamiyango. (2020). Implication of sensory evaluation and quality assessment in food product development: A review, Curr. Res. Nutr. Food Sci., vol. 8, no. 3, pp. 690-702, doi: 10.12944/CRNFSJ.8.3.03.
[21] D. Singh-Ackbarali and R. Maharaj. (2014). Sensory Evaluation as a Tool in Determining Acceptability of Innovative Products Developed by Undergraduate Students in Food Science and Technology at The University of Trinidad and Tobago, J. Curric. Teach., vol. 3, no. 1, pp. 10-27, doi: 10.5430/jct.v3n1p10.
[22] H. S. Lee and K. O. Kim. (2008). Difference test sensitivity: Comparison of three versions of the duo-trio method requiring different memory schemes and taste sequences, Food Qual. Prefer., vol. 19, no. 1, pp. 97-102, doi: 10.1016/j.foodqual.2007.07.004.
[23] M. Y. B. Adjei. (2017). Applications and Limitations of Discrimination Testing. Elsevier Ltd.
[24] F. Silva, et al. (2020). CATA vs FCP for a rapid descriptive analysis in sensory characterization of fish, J. Sens. Stud., vol. 35, no. 6, doi: 10.1111/joss.12605.
[25] A. C. Bovell-Benjamin and J. X. Guinard. (2003). Novel Approaches and Application of Contemporary Sensory Evaluation Practices in Iron Fortification Programs, Crit. Rev. Food Sci. Nutr., vol. 43, no. 4, pp. 379-400, doi: 10.1080/10408690390826563.
[26] S. Jain, L. L. Rai, and S. S. Ahlawat. (2020). Proximate compositional, texture profile and colour profile analysis of cottage cheeses prepared using milk clotting enzymes extracted from mustard and sunflower oilseed cakes, Pharma Innov. J., vol. 9, no. 2, pp. 277-281, [Online]. Available: http://www.thepharmajournal.com.
[27] K. Kohyama. (2020). Food Texture—Sensory Evaluation and Instrumental Measurement, Textural Charact. World Foods, vol. 1, no. Kohyama 2015, pp. 1-13, doi: 10.1002/9781119430902.ch1.
[28] K. Nishinari, K. Kohyama, H. Kumagai, T. Funami, and M. C. Bourne. (2013). Parameters of texture profile analysis, Food Sci. Technol. Res., vol. 19, no. 3, pp. 519-521, doi: 10.3136/fstr.19.519.
[29] A. G. Cruz, et al. (2010). Sensory analysis: Relevance for prebiotic, probiotic, and synbiotic product development, Compr. Rev. Food Sci. Food Saf., vol. 9, no. 4, pp. 358-373, doi: 10.1111/j.1541-4337.2010.00115.x.
[30] A. Mayssara A. (2014). Abo Hassanin Supervised, Sensory Evaluation Techniques.
[31] K. A. Hein, S. R. Jaeger, B. Tom Carr, and C. M. Delahunty. (2008). Comparison of five common acceptance and preference methods, Food Qual. Prefer., vol. 19, no. 7, pp. 651-661, doi: 10.1016/j.foodqual.2008.06.001.
[32] W. Lan, B. Jaillais, A. Leca, C. M. G. C. Renard, and S. Bureau. (2020). A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements, Food Chem., vol. 310, p. 125944, doi: 10.1016/j.foodchem.2019.125944.
[33] R. Edita, et al. (2018). Rapid evaluation of fresh chicken meat quality by electronic nose, Czech J. Food Sci., vol. 36, no. 5, pp. 420-426, doi: 10.17221/419/2017-cjfs.
[34] K. Timsorn, T. Thoopboochagorn, N. Lertwattanasakul, and C. Wongchoosuk. (2016). Evaluation of bacterial population on chicken meats using a briefcase electronic nose, Biosyst. Eng., vol. 151, pp. 116-125, doi: 10.1016/j.biosystemseng.2016.09.005.
[35] W. Wojnowski, T. Majchrzak, T. Dymerski, J. Gębicki, and J. Namieśnik. (2017). Poultry meat freshness evaluation using electronic nose technology and ultra-fast gas chromatography, Monatshefte fur Chemie, vol. 148, no. 9, pp. 1631-1637, doi: 10.1007/s00706-017-1969-x.
[36] H. L. Ramírez, A. Soriano, S. Gómez, J. U. Iranzo, and A. I. Briones. (2018). Evaluation of the Food Sniffer electronic nose for assessing the shelf life of fresh pork meat compared to physicochemical measurements of meat quality, Eur. Food Res. Technol., vol. 244, no. 6, pp. 1047-1055, doi: 10.1007/s00217-017-3021-0.
[37] D. R. Wijaya, R. Sarno, E. Zulaika, and S. I. Sabila. (2017). Development of mobile electronic nose for beef quality monitoring, Procedia Comput. Sci., vol. 124, pp. 728-735, doi: 10.1016/j.procs.2017.12.211.
[38] M. Xu, J. Wang, and L. Zhu. (2018). The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics, Food Chem., vol. 289, no. pp. 482-489, 2019, doi: 10.1016/j.foodchem.2019.03.080.
[39] A. Gliszczyńska-Świgło and J. Chmielewski. (2017). Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review, Food Anal. Methods, vol. 10, no. 6, pp. 1800-1816, doi: 10.1007/s12161-016-0739-4.
[40] S. Kiani, S. Minaei, and M. Ghasemi-Varnamkhasti. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron, Chemom. Intell. Lab. Syst., vol. 156, pp. 148-156, doi: 10.1016/j.chemolab.2016.05.013.
[41] A. Sanaeifar, H. ZakiDizaji, A. Jafari, and M. de la Guardia. (2017). Early detection of contamination and defect in foodstuffs by electronic nose: A review, TrAC - Trends Anal. Chem. , vol. 97, pp. 257-271, doi: 10.1016/j.trac.2017.09.014.
[42] M. Nurjuliana, Y. B. Che Man, D. Mat Hashim, and A. K. S. Mohamed. (2011). Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer, Meat Sci. , vol. 88, no. 4, pp. 638-644, doi: 10.1016/j.meatsci.2011.02.022.
[43] D. F. Barbin, S. M. Mastelini, S. Barbon, G. F. C. Campos, A. P. A. C. Barbon, and M. Shimokomaki. (2016). Digital image analyses as an alternative tool for chicken quality assessment, Biosyst. Eng. , vol. 144, pp. 85-93, doi: 10.1016/j.biosystemseng.2016.01.015.
[44] B. Zhang, et al. (2015). Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier, J. Food Eng. , vol. 146, pp. 143-151, doi: 10.1016/j.jfoodeng.2014.08.024.
[45] A. Girolami, F. Napolitano, D. Faraone, and A. Braghieri. (2013). Measurement of meat color using a computer vision system, Meat Sci. , vol. 93, no. 1, pp. 111-118, doi: 10.1016/j.meatsci.2012.08.010.
[46] A. Taheri-Garavand, S. Fatahi, F. Shahbazi, and M. de la Guardia. (2019). A nondestructive intelligent approach to real-time evaluation of chicken meat freshness based on computer vision technique, J. Food Process Eng. , vol. 42, no. 4, pp. 1-10, doi: 10.1111/jfpe.13039.
[47] C. Ruedt, M. Gibis, and J. Weiss. (2020). Quantification of surface iridescence in meat products by digital image analysis, Meat Sci., vol. 163, no. July 2019, p. 108064, doi: 10.1016/j.meatsci.2020.108064.
[48] S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco. (2011). Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables, Food Bioprocess Technol. , vol. 4, no. 4, pp. 487-504, doi: 10.1007/s11947-010-0411-8.
[49] P. Zapotoczny, P. M. Szczypiński, and T. Daszkiewicz. (2016). Evaluation of the quality of cold meats by computer-assisted image analysis, LWT-Food Sci. Technol. , vol. 67, pp. 37-49, doi: 10.1016/j.lwt.2015.11.042.
[50] A. Przybylak, et al. (2015). Marbling classification of lambs carcasses with the artificial neural image analysis, Seventh Int. Conf. Digit. Image Process. (ICDIP 2015), vol. 9631, no. p. 963113, 2015, doi: 10.1117/12.2197027.
[51] W. Wang, Y. Peng, H. Sun, X. Zheng, and W. Wei. (2018). Real-time inspection of pork quality attributes using dual-band spectroscopy, J. Food Eng. , vol. 237, pp. 103-109, doi: 10.1016/j.jfoodeng.2018.05.022.
[52] N. Teimouri, M. Omid, K. Mollazade, H. Mousazadeh, R. Alimardani, and H. Karstoft. (2018). On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach, Biosyst. Eng. , vol. 167, pp. 8-20, doi: 10.1016/j.biosystemseng.2017.12.009.
[53] A. Y. Khaled, S. Abd Aziz, S. K. Bejo, N. M. Nawi, I. A. Seman, and D. I. Onwude. (2018). Early detection of diseases in plant tissue using spectroscopy-applications and limitations, Appl. Spectrosc. Rev., vol. 53, no. 1, pp. 36-64, doi: 10.1080/05704928.2017.1352510.
[54] Y. Fang and R. P. Ramasamy. (2015). Current and prospective methods for plant disease detection, Biosensors, vol. 5, no. 3, pp. 537-561, doi: 10.3390/bios5030537.
[55] M. Mancini, et al. (2020). “Application of the non-destructive NIR technique for the evaluation of strawberry fruits quality parameters, Foods, vol. 9, no. 4, 2020, doi: 10.3390/foods9040441.
[56] S. Barbon, A. P. A. Da Costa Barbon, R. G. Mantovani, and D. F. Barbin. (2018). Machine Learning Applied to Near-Infrared Spectra for Chicken Meat Classification, J. Spectrosc. , vol. 2018, doi: 10.1155/2018/8949741.
[57] S. Savoia, et al. (2020). Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers, Meat Sci. , vol. 161, p. 108017, doi: 10.1016/j.meatsci.2019.108017.
[58] N. Prieto, R. Roehe, P. Lavín, G. Batten, and S. Andrés. (2009). Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review, Meat Sci. , vol. 83, no. 2, pp. 175-186, doi: 10.1016/j.meatsci.2009.04.016.
[59] A. Rady and A. A. Adedeji. (2020). Application of Hyperspectral Imaging and Machine Learning Methods to Detect and Quantify Adulterants in Minced Meats.
[60] A. Sahar, et al. (2019). Online prediction of physico-chemical quality attributes of beef using visible—near-infrared spectroscopy and chemometrics, Foods, vol. 8, no. 11, pp. 1-12, doi: 10.3390/foods8110525.
[61] M. de Nadai Bonin, et al. (2019). Predicting the shear value and intramuscular fat in meat from Nellore cattle using Vis-NIR spectroscopy, Meat Sci., vol. 163, no. p. 108077, 2020, doi: 10.1016/j.meatsci.2020.108077.
[62] C. Shi, J. Qian, W. Zhu, H. Liu, S. Han, and X. Yang. (2019). Nondestructive determination of freshness indicators for tilapia fillets stored at various temperatures by hyperspectral imaging coupled with RBF neural networks, Food Chem., vol. 275, pp. 497-503, doi: 10.1016/j.foodchem.2018.09.092.
[63] J. H. Cheng, B. Nicolai, and D. W. Sun. (2017). Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review, Meat Sci., vol. 123, pp. 182-191, doi: 10.1016/j.meatsci.2016.09.017.
[64] P. Oliveri, et al. (2014). Partial least squares density modeling (PLS-DM)—A new class-modeling strategy applied to the au-thentication of olives in brine by near-infrared spectroscopy, Anal. Chim. Acta, vol. 851, no. C, pp. 30-36, doi: 10.1016/j.aca.2014.09.013.
[65] C. H. Feng, Y. Makino, S. Oshita, and J. F. García Martín. (2018). Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances, Food Control, vol. 84, pp. 165-176, doi: 10.1016/j.foodcont.2017.07.013.
[66] G. Konda Naganathan, et al. (2016). Three dimensional chemometric analyses of hyperspectral images for beef tenderness forecasting, vol. 169. Elsevier Ltd.
[67] F. Tao and Y. Peng. (2015). A Nondestructive Method for Prediction of Total Viable Count in Pork Meat by Hyperspectral Scattering Imaging, Food Bioprocess Technol., vol. 8, no. 1, pp. 17-30, doi: 10.1007/s11947-014-1374-y.
[68] U. Siripatrawan. (2018). Hyperspectral imaging for rapid evaluation and visualization of quality deterioration index of vacuum packaged dry-cured sausages, Sensors Actuators, B Chem., vol. 254, pp. 1025-1032, doi: 10.1016/j.snb.2017.07.006.
[69] U. Khulal, J. Zhao, W. Hu, and Q. Chen. (2017). Intelligent evaluation of total volatile basic nitrogen (TVB-N) content in chicken meat by an improved multiple level data fusion model, Sensors Actuators, B Chem., vol. 238, pp. 337-345, doi: 10.1016/j.snb.2016.07.074.
[70] J. Xinhua, X. Heru, Z. Lina, G. Xiaojing, W. Guodong, and B. Jie. (2018). Nondestructive detection of chilled mutton freshness based on multi-label information fusion and adaptive BP neural network, Comput. Electron. Agric., vol. 155, no. February, pp. 371-377, doi: 10.1016/j.compag.2018.10.019.
[71] H. Jiang, S. C. Yoon, H. Zhuang, W. Wang, K. C. Lawrence, and Y. Yang. (2017). Tenderness classification of fresh broiler breast fillets using visible and near-infrared hyperspectral imaging, Meat Sci., vol. 139, pp. 82-90, 2018, doi: 10.1016/j.meatsci.2018.01.013.
[72] F. Ma, H. Qin, C. Zhou, X. Wang, C. Chen, and L. Zheng. (2016). Rapid and Non-destructive Detection of Iron Porphyrin Content in Pork Using Multispectral Imaging Approach, Food Anal. Methods, vol. 9, no. 5, pp. 1180-1187, doi: 10.1007/s12161-015-0298-0.
[73] K. Sendin, M. Manley, and P. J. Williams. (2018). Classification of white maize defects with multispectral imaging, Food Chem., vol. 243, no. June 2017, pp. 311-318, doi: 10.1016/j.foodchem.2017.09.133.
[74] W. H. Su and D. W. Sun. (2018). Multispectral Imaging for Plant Food Quality Analysis and Visualization, Compr. Rev. Food Sci. Food Saf., vol. 17, no. 1, pp. 220-239, doi: 10.1111/1541-4337.12317.
[75] J. Liu, et al. (2016). Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis, Food Chem., vol. 190, pp. 938-943, doi: 10.1016/j.foodchem.2015.06.056.
[76] A. Alshejari and V. S. Kodogiannis. (2017). An intelligent decision support system for the detection of meat spoilage using multispectral images, Neural Comput. Appl., vol. 28, no. 12, pp. 3903-3920, doi: 10.1007/s00521-016-2296-6.
[77] L. Estelles-Lopez, et al. (2017). An automated ranking platform for machine learning regression models for meat spoilage pre-diction using multi-spectral imaging and metabolic profiling, Food Res. Int., vol. 99, pp. 206-215, doi: 10.1016/j.foodres.2017.05.013.
[78] A. I. Ropodi, E. Z. Panagou, and G. J. E. Nychas. (2017). Rapid detection of frozen-then-thawed minced beef using multispectral imaging and Fourier transform infrared spectroscopy, Meat Sci., vol. 135, pp. 142-147, 2018, doi: 10.1016/j.meatsci.2017.09.016.
[79] E. D. Spyrelli, O. Ozcan, F. Mohareb, E. Z. Panagou, and G. J. E. Nychas. (2021). Spoilage assessment of chicken breast fillets by means of fourier transform infrared spectroscopy and multispectral image analysis, Curr. Res. Food Sci., vol. 4, no. September 2020, pp. 121-131, doi: 10.1016/j.crfs.2021.02.007.
[80] W. Wang, et al. (2021). A rapid and non-destructive approach to identify bone fragments embedded in lean pork slices based on multispectral imaging and chemometrics, Infrared Phys. Technol., vol. 113, no. November, p. 103575, doi: 10.1016/j.infrared.2020.103575.