References
[1] Wang, P., Zhang, X. Y,, and Kong, C. H. (2013). The response of allelopathic rice growth and microbial feedback to barnyardgrass infestation in a paddy field experiment. Eur J Soil Biol., 56: 26-32. doi: 10.1016/j.ejsobi.2013. 01.006.
[2] Zheng, Y. L., Feng, Y. L., Zhang, L. K., Callaway, R. M., Valiente-Banuet, A., Luo, D. Q., et al. (2015). Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol, 205: 1350-1359. doi: 10.1111/nph.13135.
[3] Zuo, S. P., Li, X. W., Ma, Y. Q., and Yang, S. Y. (2014). Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil, 378, 49-58. doi:10.1007/s11104-013-2020-6.
[4] Cheng, F. and Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci., 6: 1020. doi: 10.3389/fpls.2015.01020.
[5] Barazani, O. and Friedman, J. (1999). Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci., 18: 741-755. doi: 10.1080/07352689991309469.
[6] Chou, C. H. (1999). Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci., 18: 609-636. doi: 10.1016/S0735-2689 (99)00393-7.
[7] Cheema, Z. A. and Khaliq, A. (2000). Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semiarid region of Punjab. AgricEcosyst Environ., 79: 105-112. doi: 10.1016/S0167-8809(99)00140-1.
[8] Zhou, B., Kong, C. H., Li, Y. H., Wang, P., and Xu, X. H. (2013). Crabgrass (Digitariasanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. J Agric Food Chem., 61: 5310-5317. doi: 10.1021/jf401605g.
[9] Abbas, T., Ahmad, A., Kamal, A., Nawaz, M. Y., Jamil, M. A., Saeed, T., Abid, M. A., Ali, H. A., and Ateeq, M. (2021). Ways to use allelopathic potential for weed management: a review. Int J Food SciAgric., 5(3): 492-498. doi: 10.26855/ijfsa.2021.09.020.
[10] Liebman, M. and Dyck, E. (1993). Crop-rotation and intercropping strategies for weed management. EcolAppl., 3: 92-122. doi: 10.2307/1941795.
[11] Mallik, A. U. (2003). Conifer regeneration problems in boreal and temperate forests with ericaceous understory: Role of disturbance, seedbed limitation, and keystone species change. Crit Rev Plant Sci., 22: 341-366. doi: 10.1080/713610860.
[12] Narwal, S. S. (2000). Weed management in rice: wheat rotation by allelopathy. Crit Rev Plant Sci., 19: 249-266. doi: 10.1016/S0735-2689(00)80004-0.
[13] Nawaz, A., Farooq, M., Cheema, S. A., and Cheema, Z. A. (2014). “Role of allelopathy in weed management,” in Recent Advances in Weed Management, B. S. Chauhan and G. Mahajan (eds.). New York: Springer-Verlag Press, pp. 39-62.
[14] Rice, E. L. (1974). Allelopathy. New York: Academic Press.
[15] Rice, E. L. (1984). Allelopathy. 2nd ed. New York: Academic Press.
[16] Cheema, Z. A., Khaliq, A., Saeed, S. (2004). Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric., 23: 73-86. doi: 10.1300/J064v23n04_07.
[17] Cheema, Z., Farooq, M., and Khaliq, A. (2013). “Application of allelopathy in crop production: success story from Pakistan,” in Allelopathy, Cheema, Z. A., Farooq, M., and Wahid, A. (eds.). Berlin Heidelberg: Springer-Verlag Press, 113-143.
[18] Jamil, M. A., Ahmad, A., Naeem, S., Kaleem, Z., Abid, M. A., and Abbas, T. (2021). Role of allelopathy for suppression of Partheniumhysterophorus: a review. Int J Food SciAgric., 5(3): 376-380. DOI: 10.26855/ijfsa.2021.09.006.
[19] Einhellig, F. A. (1995). “Allelopathy-current status and future goals,” in Allelopathy: Organisms, Processes, and Applications, A. Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Washington, DC: American Chemical Society Press, pp. 1-24.
[20] Reeves, D. W., Price, A. J., and Patterson, M. G. (2005). Evaluation of three winter cereals for weed control in conservation tillage non-transgenic cotton. Weed Technol., 19: 731-736. doi: 10.1614/WT-04-245R1.1.
[21] Singh, H. P., Batish, D. R., and Kohli, R. K. (1999). Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci., 18: 757-772. doi: 10.1080/07352689991309478.
[22] Sun, X. M., Lu, Z. Y., Liu, B. Y., Zhou, Q. H., Zhang, Y. Y., and Wu, Z. B. (2014). Allelopathic effects of pyrogallic acid secreted by submerged macrophytes on Microcystis aeruginosa: role of ROS generation. Allelopathy J., 33: 121-129.
[23] Uddin, M. R., Park, K. W., Han, S. M., Pyon, J. Y., and Park, S. U. (2012). Effects of sorgoleone allelochemical on chlorophyll fluorescence and growth inhibition in weeds. Allelopathy J., 30: 61-70.
[24] Uddin, M. R., Park, S. U., Dayan, F. E., and Pyon, J. Y. (2014). Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest ManagSci., 70: 252-257. doi: 10.1002/ps.3550.
[25] Wang, M., Wu, C., Cheng, Z., and Meng, H. (2015). Growth and physiological changes in continuously cropped eggplant (Solanummelongena L.) upon relay intercropping with garlic (Allium sativum L.). Front Plant Sci., 6: 262. doi: 10.3389/fpls.2015.00262.
[26] Chick, T. A. and Kielbaso, J. J. (1998). Allelopathy as an inhibition factor in ornamental tree growth: implications from the literature. J Arboric., 24: 274-279.