References
[1] Khattabi, N., Ezzahiri, B., Louali, L., and Oihabi, A. (2004). Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, 24(5): 281-288.
[2] Ezzahiri, B. (2021). Guide de protection phytosanitaire de la betterave à sucre au Maroc. Dar Al Qalam, Rabat (Guide of phytosanitary protection of sugar beet in Morocco. Dar Al Qalam, Rabat).
[3] Tarafdar, A., Swaroopa Rani, T., Sharath Chadran, U. S., Ghosh, R., Chobe, D. R., and Sharma, M. (2018). Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Frontiers in Plant Science, 9: 1-13.
[4] Schneider, C. L. and Whitney, E. D. (1986). Fusarium Yellows, in Compendium of Beet Diseases and Insects Whitney, E. D., Duffus, J. E. (eds.). APS Press, St. Paul, Minn p. 18.
[5] Leoni, C., Ter Braak, C. J., Gilsanz, J. C., Dogliotti, S., Rossing, W. A., and Van Bruggen, A. H. (2014). Sclerotium rolfsii dynamics in soil as affected by crop sequences. Applied Soil Ecology, 75: 95-105.
[6] Rosenblueth, M. and Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact, 19, 827-837.
[7] Yuan, J., Raza, W., Huang, Q., and Shen, Q. (2012). The ultrasound‐assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN‐6 suppressing Fusarium oxysporum. Journal of basic microbiology, 52(6), 721-730.
[8] Zhang, D., Gao, T., Li, H., Lei, B., and Zhu, B. (2017). Identification of antifungal substances secreted by Bacillus subtilis Z-14 that suppress Gaeumannomyces graminis var. tritici. Biocontrol Science and Technology, 27(2), 237-251.
[9] Adesina, M. F., Grosch, R., Lembke, A., Vatchev, T. D., and Smalla, K. (2009). In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response. FEMS Microbiology Ecology, 69: 62-74.
[10] Karimi, E., Safaie, N., Shams-baksh, M., and Mahmoudi, B. (2016) Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Microbiological Research, 192: 221-230.
[11] Hung, P. M., Wattanachai, P., Kasem, S., and Poeaim, S. (2015). Efficacy of Chaetomium species as biological control agents against Phytophthora nicotianae root rot in citrus. Mycobiology, 43: 288-296.
[12] Thampi, A. and Bhai, R. S. (2017). Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control, 109: 1-13.
[13] El-Tarabily, K. A., Hardy, G. E. S. J., and Sivasithamparam, K. (2010). Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. European Journal of Plant Pathology, 128: 527-539.
[14] Gerbore, J., Benhamou, N., Vallance, J., Le floch, G., Grizard, D., Regnault-roger, C., and Rey, P. (2014). Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science Pollution Research, 21: 4847-4860.
[15] Davet, P. and Rouxel, F. (1997). Détection et isolement des champignons du sol, Editions Quae (Detection and isolation of soil fungi, Editions Quae).
[16] Lahlali, R., Bajii, M., and Jijakli, M. (2007). Isolation and evaluation of bacteria and fungi as biological control agents against Rhizoctonia solani. Communications in Agricultural Applied Biological Sciences, 72: 973-982.
[17] Artigues, M. and Davet, P. (1984). Activities β (1-3) glucanasique et chitinasique de quelques champignons, en relation avec leur aptitude à détruire les sclérotes de Corticium rolfsii dans de la terre stérile [β (1-3) glucanase and chitinase activities of some fungi, in relation to their ability to destroy Corticium rolfsii sclerotia in sterile soil]. Soil Biology and Biochemistry, 16: 527-528.
[18] Shokes, F. M., Róźalski, K., Gorbet, D. W., Brenneman, T. B., and Berger, D. A. (1996). Techniques for Inoculation of Peanut with Sclerotium rolfsii in the Greenhouse and Field. Peanut Science, 23: 124-128.
[19] Mcfadden, W., Hall, R., and Phillips, L. G. (1989). Relation of initial inoculum density to severity of Fusarium root rot of white bean in commercial fields. Canadian Journal of Plant Pathology, 11: 122-126.
[20] Barakat, I., Chtaina, N., EL Guilli, M., and Ezzahiri, B. (2018). Évaluation du potentiel antagoniste de quelques isolats de bactéries et de Trichoderma spp. dans le contrôle de Zymoseptoria tritici agent causal de la septoriose du blé. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 6: 345-354 (Evaluation of the antagonistic potential of some bacterial isolates and Trichoderma spp. in the control of Zymoseptoria tritici causal agent of wheat septoria. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 6: 345-354).
[21] Errakhi, R., Bouteau, F., Lebrihi, A., and Barakate M. (2007) Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World Journal of Microbiology Biotechnology, 23: 1503-1509.
[22] De Curtis, F., Lima, G., Vitullo, D., and De Cicco, V. (2010). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection, 29: 663-670.
[23] Gholami, M., Khakvar, R., and Niknam, G. (2014). Introduction of some new endophytic bacteria from Bacillus and Streptomyces genera as successful biocontrol agents against Sclerotium rolfsii. Archives of Phytopathology and Plant Protection, 47: 122-130.
[24] Volpiano, C. G., Lisboa, B. B., São josé, J. F. B., De Oliveira, A. M. R., Beneduzi, A., Passaglia, L. M. P., and Vargas, L. K. (2018). Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant and Soil, 432: 229-243.
[25] Spadaro, D. and Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol., 47: 39-49.
[26] Alvarez, F., Castro M., Principe, A., Borioli, G., Fischer, S., Mori, G., and Jofre, E. (2012). The plant‐associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of applied microbiology, 112: 159-174.
[27] Sun, G., Yao, T., Feng, C., Chen, L., Li, J., and Wang, L. (2017). Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104: 35-43.
[28] Gond, S. K., Bergen, M. S., Torres, M. S., and White Jr, J. F. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defense gene expression in maize. Microbiological Research, 172: 79-87.
[29] Köhl, J., Kolnaar, R., and Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci., 10: 845.