magazinelogo

International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 207655 Total View: 2912422
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijfsa.2021.12.006

Effect of Sterile Cytoplasms on Content of Absolutely Dry Matter in the Grain Sorghum Hybrids

Bychkova Vera1, Elkonin Lev2,*

1Russian Research, Design and Technology Institute of Sorghum and Maize, Saratov, Russia.

2Federal Agrarian Research Centre of South-East Region, Saratov, Russia.

*Corresponding author: Elkonin Lev

Published: October 22,2021

Abstract

Analysis of the content of absolutely dry matter (ADM) is one of the main indicators of the productivity of varieties and hybrids in crop plants. In this study, we investigated the effect of the type of sterile cytoplasm on the content of ADM in the F1 hybrids of grain sorghum obtained on the basis of two series of alloplasmic iso-nuclear CMS-lines—with genomes of the Zheltozernoe 10 (in A3, A4, and 9E cytoplasms) and Pischevoe 614 (in 9E and M35-1A cytoplasms). The varieties of grain sorghum Mercury and Pischevoe 35 were used as pollen parents. The studies were carried out at the stages of “emergence – tillering”, “tillering – heading” and “heading – complete maturity” for three years with different hydrothermal conditions. For the first time, the effect of the type of sterile cytoplasm on the content of ADM and the manifestation of true heterosis for this trait was shown. In each season, the A3 cytoplasm significantly reduced the ADM content in the F1 hybrids with both pollen parents at the “tillering – heading” stage, whereas the 9E cytoplasm increased the ADM content at the “heading – complete maturity” stage. The manifestation of cytoplasmic effects depended on the hydrothermal regime of plant growing: the most significant differences between the hybrids in different types of sterile cytoplasms were observed under drought conditions, the 9E cytoplasm increased, and the A3 cytoplasm decreased the ADM content, whereas in the seasons with mild conditions these differences were less pronounced. The data obtained indicate the genetic influence of the cytoplasm on the assimilation capacity of sorghum hybrids and tolerance to drought stress.

References

[1] Tari, I., Laskay, G., Takacs, Z., and Poor, P. (2013). Response of Sorghum to Abiotic Stresses: A Review. Journal of Agronomy and Crop Science, 199(4), 264-274. DOI: 10.1111/jac.12017.

[2] Amelework, B., Shimelis, H., Tongoona, P., and Laing, M. (2015). Physiological Mechanisms of Drought Tolerance in Sorghum, Genetic Basis and Breeding Methods: A Review. African Journal of Agricultural Research, 10(31), 3029-3040. DOI: 10.5897/AJAR2015.9595.

[3] Badigannavar, A., Teme, N., Costa de Oliveira, A., Li, G., Vaksmann, M., Viana, V. A., Ganapathi, T. R., and Sarsu, F. (2018). Physiological, Genetic and Molecular Basis of Drought Resilience in Sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Plant Physiology, 23(4), 670-688. DOI: 10.1007/s40502-018-0416-2. 

[4] Nanaiah, G. K. and Rakshit, S. (2020). Genomic Designing for Climate Smart Sorghum. In Kole, C., Ed., Genomic Designing of Climate-Smart Cereal Crops. Springer Nature, 171-217. DOI: 10.1007/978-3-319-93381-8_5. 

[5] Proietti, I., Frazzoli, C., and Mantovani, A. (2015). Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum. Healthcare (Basel), 3(2): 172-193. DOI: 10.3390/healthcare3020172.

[6] Premalatha, N., Kumaravadivel, N., and Veerabadhiran, P. (2006). Heterosis and Combining Ability for Grain Yield and its Components in Sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Genetics, 66(2), 123-126.

[7] Kovtunova, N. A., Volodin, A. B., and Kovtunov, V. V. (2017). Heterosis in Breeding of Sweet Sorghum. Grain Economy of Russia, 49(1), 11-17.

[8] Volodin, A. B., Donets, I. A., Golub, A. S., Chukhlebova, N. S., and Kapustin, A. S. (2018). Use of Cytoplasmic Male Sterility in The Selection of Sorghum Cultures. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6), 1562-1565.

[9] Pring, D. R., Tang, H. V., and Schertz, K. F. (1995). Cytoplasmic Male Sterility and Organelle DNAs of Sorghum. In: Levings, C. S., III, and Vasil, I. K. (Eds.), Molecular Biology of Plant Mitochondria, Springer, Netherlands, 461-495. DOI: 10.1007/978-94-011-0163-9_14. 

[10] Reddy, B. V. S., Ramesh, S., and Ortiz, R. (2005). Genetic and Cytoplasmic-Nuclear Male Sterility in Sorghum. Plant Breeding Rewiews, 25, 139-169. DOI: 10.1002/9780470650301.ch6.

[11] Elkonin, L. A., Kibalnik, O. P., Zavalishina, A. N., Gerashchenkov, G. A., and Rozhnova, N. A. (2018). Genetic Functions of Cytoplasm in Plants with Special Emphasis on Sorghum. In: Dejesus, C. and Trask, L. (Eds.), Chloroplasts and Cytoplasm. Structure and Functions, Nova Science Publ., New-York, 97-154.

[12] Fujii, S., Yamada, M., Fujita, M., Itabashi, E., Hamada, K., Yano, K., Kurata, N., and Toriyama, K. (2010). Cytoplasmic-Nuclear Genomic Barriers in Rice Pollen Development Revealed by Comparison of Global Gene Expression Profiles among Five Independent Cytoplasmic Male Sterile Lines. Plant Cell Physiology, 51, 610-620. DOI: 10.1093/pcp/pcq026.

[13] Li, C.-R., Liang, D.-D., Li, J., Duan, Y. B., Li, H., Yang, Y.-C., Qin, R.-Y., Li, L., Wei, P.-C., and Yang, J.-B. (2013). Unravelling Mitochondrial Retrograde Regulation in the Abiotic Stress Induction of Rice ALTERNATIVE OXIDASE 1 Genes. Plant, Cell and Environ, 36, 775-788. DOI: 10.1111/pce.12013.

[14] Ng, S., De Clercq, I., Van Aken, O., Law, S. R., Ivanova, A., Willems, P., Giraud, E., Van Breusegem, F., and Whelan, J. (2014). Anterograde and Retrograde Regulation of Nuclear Genes Encoding Mitochondrial Proteins During Growth, Development, and Stress. Molecular Plant, 7, 1075-1093. DOI: 10.1093/mp/ssu037.

[15] Liberator, K. L., Dukowic-Schulze, S., Miller, M. E., Chen, C., and Kianian, S. F. (2016). The Role of Mitochondria in Plant Development and Stress Tolerance. Free Radical Biology and Medicine, 100, 238-256. DOI: 10.1016/j.freeradbiomed.2016.03.033.

[16] Jenkins, B. M., Baxter, L. L., Miles, T. R. Jr., and Miles, T. R. (1998). Combustion Properties of Biomass. Fuel Processing Technology, 54, 17-46. DOI: 10.1016/S0378-3820(97)00059-3.

[17] Perazzo, A. F., Carvalho, G. G. P., Santos, E. M., Bezerra, H. F. C., Silva, T. C., Pereira, G. A., Ramos, R. C. S., and Rodrigues, J. A. S. (2017). Agronomic Evaluation of Sorghum Hybrids for Silage Production Cultivated in Semi-Arid Conditions. Frontiers in Plant Science, 8, 1088. DOI: 10.3389/fpls.2017.01088.

[18] Elkonin, L. A., Kozhemyakin, V. V., and Ishin, A. G. (1997). The Use of New CMS-Inducing Cytoplasms to Create Early Maturing Lines of Sorghum with Male Sterility. Russian Agricultural Sciences, 2, 7-9.

[19] Dospekhov, B. A. (2014). Methodology of Field Trial (with Fundamentals of Statistical Processing of Research Results), Alyans, Moscow.

[20] Guzhov, Yu. L., Fuks, A., and Valichek, P. (2003). Selection and Seed Production of Cultivated Plants. 3rd Edition, Mir, Moscow. 

[21] Cherenkova, E. A. and Zolotokrylin, A. N. (2016). On the Comparability of Some Quantitative Drought Indices. Fundamental and Applied Climatology, 2, 79-94. DOI: 10.21513/2410-8758-2016-2-79-94.

[22] Bohra, A., Jha, U. C., Adhimoolam, P., Bisht, D., and Singh, N. P. (2016). Cytoplasmic Male Sterility (CMS) in Hybrid Breeding in Field Crops. Plant Cell Repts., 35, 967-993. DOI: 10.1007/s00299-016-1949-3. 

[23] Horn, R., Gupta, K. J., and Colombo, N. (2014). Mitochondrion Role in Molecular Basis of Cytoplasmic Male Sterility. Mitochondrion, 19, 198-205. DOI: 10.1016/j.mito.2014.04.004. 

[24] Kibalnik, O. P. and Elkonin, L. A. (2020). Influence of Different Types of Sterile Cytoplasms (A3, A4, 9E) on the Combining Ability of CMS Lines of Sorghum. Vavilov Journal of Genetics and Breeding, 24(6), 549-556. DOI: 10.18699/VJ20.648.

[25] Chandra-Shekara, A. C., Prasanna, B. M., Singh B. B., Unnikrishnan, K. V., and Seetharam, A. (2007). Effect of Cytoplasm and Cytoplasm-Nuclear Interaction on Combining Ability and Heterosis for Agronomic Traits in Pearl Millet {Pennisetum glaucum (L) Br. R}. Euphytica, 153, 15-26. DOI: 10.1007/s10681-006-9194-4.

[26] Kibal’nik, O. P. and El’konin, L. A. (2012). Effect of Type of Sterile Cytoplasm on Manifestation of Economically Valuable Traits in Sorghum-Sudangrass Hybrids. Russ. Agricult. Sci., 38, 22-25. DOI: 10.3103/S1068367412010107. 

[27] Bychkova, V. V. and Elkonin, L. A. (2016). The Effect of the Type of Sterile Cytoplasm on the Photosynthetic Parameters of the Grain Sorghum Hybrids. Grain Economy of Russia, 4, 5-8.

How to cite this paper

Effect of Sterile Cytoplasms on Content of Absolutely Dry Matter in the Grain Sorghum Hybrids

How to cite this paper: Bychkova Vera, Elkonin Lev. (2021) Effect of Sterile Cytoplasms on Content of Absolutely Dry Matter in the Grain Sorghum HybridsInternational Journal of Food Science and Agriculture5(4), 601-607.

DOI: http://dx.doi.org/10.26855/ijfsa.2021.12.006