Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Clinical and Experimental Medicine Research /


Nanopore Technology

Date: September 22,2021 |Hits: 250 Download PDF How to cite this paper

Nida Tabassum Khan

Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Airport Road, Quetta, Balochistan, Pakistan.

*Corresponding author: Nida Tabassum Khan


Polymeric nanopores can be highly beneficial for therapeutic companies.  They provide effective treatments and diagnostic characteristics.  They are smaller in size, can be cost effective.  They can be used to treat brain disorders, ocular diseases and other such diseases that are incurable now, can be treated with polymeric nanopores in future.  The experiments are conducted on model organisms, showed reliable outcome.  Other than stem cells, this technique can revolutionize the therapeutic companies.  Nanopore technology displayed innovative applications with adaptable information throughput.  This technology is not only utilized in clinical sciences but it also offers the potential for environmental clean-up and conservation such as in water treatment, sludge inactivation process, separation of solid wastes, in filtration techniques etc.  Nanopores are described as tiny holes in cellular or synthetic membranes used for recognition and transport of ions/molecules between compartments within the cell, as well as between the extracellular environment and the cell itself.  Furthermore, nanopore technology in DNA sequencing provides a good representation of present-day advancement in biochemical molecular techniques.


[1] Desai, T. A., Hansford, D. J., Kulinsky, L., Nashat, A. H., Rasi, G., Tu, J., ... and Ferrari, M. (1999). Nanopore technology for biomedical applications. Biomedical Microdevices, 2(1), 11-40.

[2] Cressiot, B., Bacri, L., and Pelta, J. (2020). The promise of nanopore technology: Advances in the discrimination of protein sequences and chemical modifications. Small Methods, 4(11), 2000090.

[3] Aksimentiev, A., Brunner, R. K., Cruz-Chu, E., Comer, J., and Schulten, K. (2009). Modeling transport through synthetic nanopores. IEEE Nanotechnology Magazine, 3(1), 20-28.

[4] Adiga, S. P., Jin, C., Curtiss, L. A., Monteiro‐Riviere, N. A., and Narayan, R. J. (2009). Nanoporous membranes for medical and biological applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(5), 568-581.

[5] Robertson, J. W. and Reiner, J. E. (2018). The utility of nanopore technology for protein and peptide sensing. Proteomics, 18(18), 1800026.

[6] Yin, Y. D., Zhang, L., Leng, X. Z., and Gu, Z. Y. (2020). Harnessing biological nanopore technology to track chemical changes. TrAC Trends in Analytical Chemistry, 116091.

[7] Discher, D. E. and Ahmed, F. (2006). Polymersomes. Annu. Rev. Biomed. Eng., 8, 323-341.

[8] Lee, J. S. and Feijen, J. (2012). Polymersomes for drug delivery: design, formation and characterization. Journal of Controlled Release, 161(2), 473-483.

[9] Guo, L. J. (2007). Nanoimprint lithography: methods and material requirements. Advanced Materials, 19(4), 495-513.

[10] Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U., and Torres, C. S. (2001). Nanoimprint lithography: challenges and prospects. Nanotechnology, 12(2), 91.

[11] Chou, S. Y., Krauss, P. R., and Renstrom, P. J. (1996). Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14(6), 4129-4133.

[12] Pawar, P. V., Gohil, S. V., Jain, J. P., and Kumar, N. (2013). Functionalized polymersomes for biomedical applications. Polymer Chemistry, 4(11), 3160-3176.

[13] Guan, L., Rizzello, L., and Battaglia, G. (2015). Polymersomes and their applications in cancer delivery and therapy. Nanomedicine, 10(17), 2757-2780.

[14] Robertson, J. D., Yealland, G., Avila-Olias, M., Chierico, L., Bandmann, O., Renshaw, S. A., and Battaglia, G. (2014). pH-sensitive tubular polymersomes: formation and applications in cellular delivery. ACS nano, 8(5), 4650-4661.

[15] Iqbal, S., Blenner, M., Alexander-Bryant, A., and Larsen, J. (2020). Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromolecules, 21(4), 1327-1350.

[16] de Gennes, P. G. (1999). Flexible polymers in nanopores. Polymers in Confined Environments, 91-105.

[17] Wang, P., Wang, M., Liu, F., Ding, S., Wang, X., Du, G., ... and Wang, Y. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature communications, 9(1), 1-9.

[18] Notario, B., Pinto, J., and Rodriguez-Perez, M. A. (2016). Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 78, 93-139.

[19] Adiga, S. P., Curtiss, L. A., Elam, J. W., Pellin, M. J., Shih, C. C., Shih, C. M., ... and Narayan, R. J. (2008). Nanoporous materials for biomedical devices. Jom, 60(3), 26-32.

[20] Gonsalves, K., Halberstadt, C., Laurencin, C. T., and Nair, L. (Eds.). (2007). Biomedical nanostructures. John Wiley & Sons.

[21] Lee, L. J. (2006). Polymer nanoengineering for biomedical applications. Annals of Biomedical Engineering, 34(1), 75-88.

[22] Nair, S. S., Mishra, S. K., and Kumar, D. (2019). Recent progress in conductive polymeric materials for biomedical applications. Polymers for Advanced Technologies, 30(12), 2932-2953.

[23] Guan, J., He, H., Yu, B., and Lee, L. J. (2007). Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery. Biomedical Nanostructures, 115-137.

[24] Sharma, R., Geranpayehvaghei, M., Ejeian, F., Razmjou, A., and Asadnia, M. (2021). Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta, 122815.

[25] Jeon, G., Yang, S. Y., and Kim, J. K. (2012). Functional nanoporous membranes for drug delivery. Journal of Materials Chemistry, 22(30), 14814-14834.

[26] Mabrouk, M., Rajendran, R., Soliman, I. E., Ashour, M. M., Beherei, H. H., Tohamy, K. M., ... and Das, D. B. (2019). Nanoparticle-and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics, 11(6), 294.

[27] Haidary, S. M., Corcoles, E. P., and Ali, N. K. (2012). Nanoporous silicon as drug delivery systems for cancer therapies. Journal of Nanomaterials, 2012.

[28] Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., ... and Brinker, C. J. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 10(5), 389-397.

[29] Jackson, E. A. and Hillmyer, M. A. (2010). Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano, 4(7), 3548-3553.

[30] Paliwal, R., Babu, R. J., and Palakurthi, S. (2014). Nanomedicine scale-up technologies: feasibilities and challenges. Aaps Pharmscitech, 15(6), 1527-1534.

[31] Cai, P., Leow, W. R., Wang, X., Wu, Y. L., and Chen, X. (2017). Programmable nano-bio interfaces for functional biointegrated devices. Advanced Materials, 29(26), 1605529.

[32] Vijayan, V., Uthaman, S., and Park, I. K. (2018). Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers, 10(9), 983.

How to cite this paper

Nanopore Technology

How to cite this paper: Nida Tabassum Khan. (2021) Nanopore TechnologyInternational Journal of Clinical and Experimental Medicine Research5(4), 457-459.

DOI: http://dx.doi.org/10.26855/ijcemr.2021.10.006

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.