Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Clinical and Experimental Medicine Research /

DOI:http://dx.doi.org/10.26855/ijcemr.2021.10.002

A New Scientific Paradigm of Reverse Vaccinology: An Annotation

Date: August 27,2021 |Hits: 489 Download PDF How to cite this paper

Abu S. M. Giasuddin1,*, Khadija A. Jhuma1, Waziul A. Chowdhury1, Rubayat S. Giasuddin2

1Impulse Hospital, ImHS&RCLtd, 304/E Tejgaon Industrial Area, Dhaka-1208, Bangladesh.

2Department of Medicine, Anwer Khan Modern Medical College, Road No. 8A, Dhanmondi, Dhaka-1207, Bangladesh.

*Corresponding author: Abu S. M. Giasuddin

Abstract

Since the pioneer work in 1796 by Edward Jenner, Father of Vaccination, many vaccines against infectious diseases have become routinely available saving lives in the community all over the world. The modern terminology of ‘Vaccination’ was derived from ‘Vacca’ meaning cow. Renowned biomedical scientists contributed in the development of ‘Immunology’ as an important biomedical science. Many of them have received ‘Nobel Prize’ for their noble discoveries in Immunology. The development of nucleic acid sequencing technology has changed the landscape of the evolving field of vaccinology since 1990s. The methodology of Reverse Vaccinology, application of genomic technologies in vaccine research, represented a major revolution in the process of discovering novel vaccines. Bringing a new vaccine from basic research to a product ready for commercial and community use is a very challenging task that requires formulating completely new scientific paradigm. Reverse Vaccinology is a good and classical example of such a paradigm. In fact, it is having, and will have, tremendous applications and implications in the development of protective vaccines particularly against the pandemic ‘COVID-19’ caused by ‘SARS-CoV-2’ creating havoc all over the world presently.

References

[1] Giasuddin, A. S. M. (2017). Role of immunologists in the development of health care system. Journal of Immunology and Immunotherapy, 1(1), 2. http//www.imedpub.com/articles.

[2] Greenberg S. A concise history of immunology. www.columbia.edu/itc/hs/medical.../immunology/.../ConcisehistoryImmun ology.pdf. (Retrieved 03 July 2018).

[3] Chappel, H., Haeney, M., Mishbah, S., and Sowden, N. (eds.). (2014). Essential of clinical immunology, 6th edition; Oxford: Wiley Blackwell; 2014. (www.wiley.com/wiley-blackwell).

[4] Donati, C. and Rappuoli, R. (2012). Reverse vaccinology in the 21st century: improvements over the original design. Annals of New York Academy of Sciences, 285, 115-132.

[5] Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkenes, E. F., Kerlavage, A. R., et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenza Rd. Science, 269, 496-512.

[6] Pizza, M., Scarlato, V., Masignani, Giuliani M. M., Arico, B., Comanducci, M., et al. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole genome sequencing. Science, 287, 1816-1820.

[7] Boerno, S. T., Grimm, C., Lehrach, H., and Schweiger, M. R. (2010). Next-generation sequencing technologies for DNA methylation analyses in cancer genomics. Epigenomics, 2, 199-207.

[8] Nobuta, K., McCormick, K., Nakano, M., Meyers, B. C. (2010). Bioinformatics analysis of small RNA in plants using next generation sequencing technologies. Methods in Molecular Biology, 591, 89-106.

[9] Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., et al. (2000). Complete genome sequence of Neisseria meningitides serogroup B strain MC58. Science, 287, 1809-1815.

[10] Giuliani, M. M., Adu Bobie, J., Comanducci, M., Arico, B., Savino, S., Santini, L., et al. (2006). A universal vaccine for serogroup B Meningococcus. Proceedings of the National Academy of Sciences USA, 103, 10834-10839.

[11] Michalik, M., Djahanshiri, B., Leo, J. C., and Linke, D. (2016). Reverse Vaccinology: The pathway from genomes and epitope predictions to tailored recombinant vaccines. Methods in Molecular Biology, 1403, 87-106.

[12] Rappuoli, R. and Aderem, A. (2011). A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature, 473,463-466.

[13] Giasuddin, A. S. M., Jhuma, K. A., and Haq, A. M. M. (2018). Reverse vaccinology: Modern challenges in vaccine design and development. Journal of the Medical College for Women and Hospital, 16(1&2), 23-25.

[14] Tettelin, H., Riley, D., Cattuto, C., and Medini, D. (2008). Comparative genomics: the bacterial pangenome. Current Opinion in Microbiology, 11,472-477.

[15] Berlanda Scorza F., Doro, M., Rodriguez-Ortega, M. J., Stella, M., Liberatori, S., Taddei, A. R., et al. (2008). Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatorIR IHE3034 mutant. Molecular and Cell Proteomics, 7, 473-485.

[16] Stern-Ginossar, N., Weisburd, B., Michalski, A., Li, V. T. K., Hein, M. V., Huang, S.-X., et al. (2012). Decoding human cytomegalovirus. Science, 338, 1088-1093.

[17] Cheng, L., Lu, W., Kulkarni, B., Pejovic, T., Yan, X., Chiang, J.-H., et al. (2010). Analysis of chemotherapy response programs in ovarian cancers by the next-generation sequencing technologies. Gynecology and Oncology, 117, 159-169.

[18] Contreras, M., Villar, M., Artigas-Jerónimo, S., Kornieieva, L., Mуtrofanov, S., de la Fuente, J. (2018). A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. Parasites and Vectors, 11(1), 43. doi: 10.1186/s13071-018-2618-x.

[19] Dalsass, M., Brozzi, A., Medini, D., and Rappuoli, R. (2019). Comparison of Open-Source Reverse Vaccinology Programs for Bacterial Vaccine Antigen Discovery. Frontiers in Immunology, 10, 113. DOI: 10.3389/fimmu. 2019.00113. 

[20] Wu, Z. and McGrogen, J. M. (2020). Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China. Journal of American Medical Association, 323(13), 1239-1242. doi:10.1001/jama.2020.2648.

[21] Dayarathana, S., Jeewandara, C., Gomes, L., Somathilaka, G., Jayathilaka, D., Vimalachandran, V., et al. (2020). Similarities and differences between the cytokine storms in acute dengue and COVID-19. Research Square, doi: https://doi.org/10.21203/rs.3.rs-39133/vi.

[22] Gupta, E., Mishra, R. K., and Niraj, R. R. K. (2020). Identification of potential vaccine candidates against SARS-CoV-2, a step forward to fight COVID-19: A reverse vaccinology approach. bioRxiv, DOI: http://doi.org/10.1101/2020.04.13.039198 (Re-trieved 16 June 2021).

[23] Enayatkhani, M., Hasaniazad, M., Faezi, S., Gouklani, H., Davoodian, P., Ahmadi, N., et al. (2021). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An Insilco study. Journal of Biomolecular Structure and Dynamics, 39(8), 2857-2872. doi: 10.1080/07391102.2020.1756411. 

[24] Bansal, A., Padappayil, R. P., Garg, C., Singal, A., Gupta, M., Klein, A. (2020). Utility of artificial intelligence amidst the COVID 19 pandemic: A review. Journal of Medical Systems, 44: 156. Available from: https://doi.org/10.1007 /s10916-020-01617-3.

[25] Chen, W. (2020). Promise and challenges in the development of COVID-19 vaccines. Human Vaccines & Immunotherapeutics, 16(11), 2604-2608. doi:10.1080/21645515.2020.1787067. Available from: https://doi.org/10.1080/21645515.2020.1787067.

[26] Burton, D. R. and Walker, L. M. (2020). Rational vaccine design in the time of COVID-19. Cell Host & Microbe, 27 (5), 695-698. Available from: https://doi.org/10.1016/j.chom.2020.04.022.

[27] Wikipedia. COVID-19 vaccine. Available from: https://en.m.wikipedia.org/wiki/COVID 19 Vaccine. (Accessed on 05 December 2020)

[28] www.cepi.net. Newvaccines for a safer world. CEPI 2020. (Retrieved 15 December 2020)

[29] www.cept.net. CEPI’s COVID-19 vaccine portfolio. CEPI 2020 (Retrieved 15 December 2020)

[30] Rappuoli, R., Bottomley, M. J., D’Oro, U., Finco, O., De Gregorio, E. (2016). Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. Journal of Experimental Medicine, 213(4), 469-481. Available from:www.jem.org/cgi/doi/10.1084/jem.20151960.

How to cite this paper

A New Scientific Paradigm of Reverse Vaccinology: An Annotation

How to cite this paper: Abu S. M. Giasuddin, Khadija A. Jhuma, Waziul A. Chowdhury, Rubayat S. Giasuddin. (2021) A New Scientific Paradigm of Reverse Vaccinology: An Annotation. International Journal of Clinical and Experimental Medicine Research5(4), 431-434.

DOI: http://dx.doi.org/10.26855/ijcemr.2021.10.002

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.