magazinelogo

International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 187865 Total View: 2769769
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article http://dx.doi.org/10.26855/ijfsa.2021.09.018

Machinery for Direct Sowing of Rice in Agricultural Conditions

Calixto Domínguez Vento1, Augusto Guilherme de Araújo2, Alexander Miranda Caballero3,*, Guillermo Díaz López4, Amaury Rodríguez-Gonzáles5

1Agricultural Engineering Research Institute (IAgric), UCTB, Pinar del Río, Cuba. 

2Machinery for Conservation Agriculture, Londrina, Parana, Brazil. 

3National Institute of Agricultural Sciences (INCA), San José de las Lajas, Mayabeque, Cuba. 

4Los Palacios Base Scientific Technological Unit (UCTB-LP), belonging to the National Institute of Agricultural Sciences, Pinar del Río, Cuba.

5Agricultural Engineering Research Institute (IAgric), La Habana, Cuba.

*Corresponding author: Alexander Miranda Caballero

Published: August 26,2021

Abstract

Cuban agriculture, to achieve the sustainability of agricultural systems, needs to initiate a transition process towards conservation agriculture practices; which implies a change in production systems and the technologies they use. Conservation agriculture (CA) implies a change in planting technologies and mechanized systems. Machinery specifically designed for the adaptation of components destined to sow in tilled soil and without residue on the surface is required, so that they are able to operate with crop residues or cover plants in different forms and situations. In Cuba, although the basic principles of conservation agriculture have been introduced in an experimental way with good results in some crops, there is not enough experience of the sowing machines to be used in a CA system based on the reduced mobilization of the soil, the coverage permanent surface area and crop rotation. In the following work, a review of the main changes of direct seeders for CA in rice agroecosystems is presented.

References

[1] Piedra, C. L., Ramírez, M. F., Luna, M. S., and Araya, V. A. (2017). Manual of good agricultural and environmental practices for rice cultivation in the Barra del Colorado National Wildlife Refuge (RNVS Barra de Colorado), Costa Rica, p. 17. Available fom: https://www.sinac.go.cr.

[2] Franques, J. M. (2018). The new dry sowing system for rice. Firstedition. Spain: Community of Regants-Sindicat Agrícola de l'Ebre, p. 58. ISBN: 978-84-697-5393-4. 

[3] Nandana, R., Singha, V., Shankar, S., Kumarc, V., Krishna, K., Prasad, C., Pooniad, S., Kanwar, R., Bhattacharyyae, R., and McDonaldf, A. (2019). Impact of conservation tillage in rice-based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma, 340: 104-114. doi.org/10.1016/j.geoderma.2019.01.001.

[4] Iqbal, A., He, L., Khan, A., Wei, S., Akhtar, K., Ali, I., Ullah, S., Munsif, F., Zhao, Q., and Jiang, L. (2019). Organic Manure Coupled with Inorganic Fertilizer: An Approach for the Sustainable Production of Rice by Improving Soil Properties and Nitrogen Use Efficiency. Agronomy, 9, 651. doi: 10.3390/agronomy9100651.

[5] Domínguez, C., Díaz, G., Domínguez, D., Miranda, A., Duarte, C., Ruiz, M., Rodríguez, A., and Martin, R. (2020). Influence of Conservation Agriculture on soil properties under irrigated rice cultivation. Agricultural Technical Sciences Magazine, 29(3): 75-83, 2020. ISSN: 1010-2760.

[6] Grohs, M. (2018). Post-colheite management and coverplants: Influence on nutrient cycling, greenhouse effect gas emissions and rice production. [Tese of doutorado]. [Brazil]: Federal University of Santa Maria, p. 91.

[7] Song, K., Zheng, X., Weiguang, L. V., Qin, Q., Sun, L., Zhang, H., and Xue, Y. (2019). Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Scientific Reports, 9: 4586. doi.org/10.1038/s41598-019-40908-9.

[8] Issaka, F., Zhang, Z., Betancourt, Y., Zhao, Z., Amézquita, E., Sheka Kanu, A. B., Li, W., and Acquatella J. (2019). Zero Tillage Improves Soil Properties, Reduces Nitrogen Loss and Increases Productivity in a Rice Farmland in Ghana. Agronomy, 9(10): 641, ISSN: 2073-4395. doi: 10.3390/agronomy9100641.

[9] Friedrich, T., Kienzle, J., and Kassam, A. (2014). Conservation Agriculture in Developing Countries: The Role of Mechanization. Research Gate, FAO, Rome, Italy. Available from: https://www.researchgate.net/publication/260387802.

[10] Kassam, A., Friedrich, T., and Derpsch, R. (2018). Global spread of Conservation Agriculture. International Journal of Environmental Studies. doi.org/10.1080/00207233.2018.1494927.

[11] Farooq, M., Siddique, K. H. M., Rehman, H., Aziz, T., Lee, D. J., and Wahid, A. (2011). Rice direct seeding: experiences, challenges and opportunities. Soil and Tillage Research, 111(2): 87-98. doi.org/10.1016/j.still.2010.10.008.

[12] Javier, P. J., Bragachini, M., and Casini, C. (2011). Direct Sowing. Technical Update No. 58-February. Editions National Institute of Agricultural Technology “INTA”, Argentina. P. 28. Available from: www.cosechaypostcosecha.org.

[13] Araújo, A. G., Sims, B., Desbiolles, J., Bolonhezi, D., Haque, E., Jin, H., et al. (2020). The status of mechanization in Conservation Agriculture systems. In: Kassam, A. (Ed.), Advances in Conservation Agriculture Volume 1—Systems and Science. Burleigh Dodds Science Publishing Limited, Cambridge, UK. 2019. ISBN-13: 9781786762641. 

[14] Gil, J. A. and Veroz, Ó. (2009). Saving and Energy Efficiency with Conservation Agriculture. Editorial Fund of the Institute for Energy Diversification and Saving (IDEA). P. 52. ISBN: 978-84-96680-44-9. Available from: www.idae.es.

[15] Desbiolles, J. (2005). Mechanics and Features of Disc Openers in Zero-Till Applications. Research paper, p. 6, Agricultural Machinery Research and Design Centre (AMRDC), University of South Australia, Mawson Lakes. Available from http://www.unisa.edu.au/amrdc/Areas/Proj/SeedTrials/Waikerie_field_day_disc.

[16] Ashworth, M., Desbiolles, J., and Tola, E. K. (2010). Disc Seeding in Zero-till Farming Systems—A Review of Technology and Paddock Issues. Western Australian No-Tillage Farmers’ Association (WANTFA), Northam, Australia.

[17] Munir, M. A., Iqbal, M., Munir, A., Ahmad, M., and Miran, S. (2012). Evaluation of three seed furrow openers mounted on a zone disk tiller drill for residue management, soil physical properties and crop parameters. Pak. J. Agri. Sci., 49(3): 315-321. ISSN (Online) 2076-0906. Available fom: http://www.pakjas.com.pk.

[18] Baker, C. J., Saxton, K. E., Ritchie, W. R., Chamen, W. C. T., Reicosky, D. C, Ribeiro, M. F. S., et al. (2008). No-tillage sowing in conservation agriculture. Food and Agriculture Organization of the United Nations. Editorial Acribia, SA Zaragoza (Spain). P. 381. Available from: www.editorialacribia.com. 2008.

[19] García, S., Serwatowski, R., Cabrera, J. M., Saldaña, N., Flores, A., and Gutiérrez, C. (2012). Analysis of the performance of four models of straw cutters used in seeders for direct sowing. Mexican Journal of Agricultural Sciences, 3 (spe 4): ISSN 2007-0934. Available fom: www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342012000900004.

[20] Haque, M. E., Bell, R. W., Jahiruddin, M., Hossain, M. M., et al. (2018). Manual for Smallholders’ Conservation Agriculture in Rice-based Systems. Murdoch University. P. 108. Available from: http://researchrepository.murdoch.edu.au/id/eprint/41693.

[21] Tullberg, J. N., Dixon, J., and Kearns, S. (2010). Conservation agriculture in Australia. Available from: www.mapama.gob.es.

[22] Aikins, K. A., Antille, D. L., Jensen, T. A., Barr, J. B., Ucgul, M., and Desbiolles, J. M. A. (2018). No-tillage tine furrow opener performance: soil-tool-residue interactions, tool geometry and settings. ASABE Paper No.: 1800251. St. Joseph, MI.: ASABE. doi: 10.13031/aim.201800251.

[23] Sattler, A. (2006). Seeders for direct sowing. Technological Evolution and Problems in the Machine/Soil relationship in southern Brazil. In thebook: Contributions of Science and Technology to the Productive and Sustainable Management of the Soils of the Southern Cone, Chapter: II Relationship Seeder-soil in Direct Sowing: “Problems and Solutions”, Uruguay, pp. 269-272. ISBN 92-90-39-751-9.

[24] Godwin, R. J. and O’Dogherty, M. J. (2007). Integrated soil tillage force prediction models. J. Terrramech, 44(1): 3-14. doi.org/10.1016/j.jterra.2006.01.001.

[25] Conte, O., Levien, R., Debiasi, H., Sturmer, S. L. K., Mazurana, M., and Muller, J. (2011). Soil disturbance index as an indicator of seed drill efficiency in no-tillage agrosystems. Soil and Tillage Research, 2011, 114(1): 37-42. doi: 10.1016/j.still.2011.03.007.

[26] Fick, C. (2000). On the money. Farm Journal, April, pp. 12-13.

[27] Bragachini, M., Sánchez, F., Urrets, G., Scaramuzza, F., Villarroel, D., and Vélez, J. P. (2018). Complete report of the seed drills category. INTA Manfredi. Argentina. Available from: TodoAgro.com.ar.

[28] Yezekyan, T., Marinello, F., Armentano, G., and Sartori, L. (2018). Analysis of cost and performances of agricultural machinery: Reference model for sprayers. Agron. Res., 16, 604-614.

[29] Bell, R. W., Haque, E., Jahiruddin, M., Rahman, Md. M., et al. (2019). Conservation Agriculture for Rice-Based Intensive Cropping by Smallholders in the Eastern Gangetic Plain, Agriculture, 9, 5. doi: 10.3390/agriculture9010005.

[30] Haque, M. E., Bell, R.W., Jahiruddin, M., Vance, W., Islam, M. A., and Salahin N. (2014). Residue Handling Capacity of the Versatile Multi-crop Planter for Two-wheel Tractors. In: Proceedings of the Conference on Conservation Agriculture for Smallholders in Asia and Africa. 7-11 December 2014, Mymensingh, Bangladesh. (Eds. WH Vance, RW Bell, ME Haque). Pp. 13-14.

[31] Mobarak, M., Begumb, M., Hashemc, A., Rahmanb, M., and Belld, R. W. (2021). Mulching and weed management effects on the performance of rice (oryza sativa l.) transplanted in non-puddled soil. Journal of Wastes and Biomass Management, 3(1), 3-21. doi.org/10.26480/jwbm.01.2021.13.21.

[32] He, J., Zhang, Z. Q., Li, H. W., and Wang, Q. J. (2014). Development of small/medium size no-till and minimum-till seeders in Asia: a review. International Journal of Agricultural and Biological Engineering, 7(4), 1-12. doi: 10.3965/j.ijabe.20140704.001.

[33] Sidhu, H. S., Manpreet, A., Humphreys, A. E., Yadvinder, B. C. F., et al. (2007). The Happy Seeder enables direct drilling of wheat into rice stubble. Australian Journal of Experimental Agriculture, 47, 844-854. Available from: www.publish.csiro.au/journals/ajea.

[34] Zhang, M. H., Wang, Z. M., Luo, X. W., Zang, Y., Yang, W. W., Xing, H., et al. (2018). Review of precision rice hill-drop drilling technology and machine for paddy. Int J Agric & Biol Eng., 11(3): 1-11. Available from: https://www.ijabe.org.

[35] Desbiolles, J., Saunders, C., Barr, J., Riethmuller, G., Northover, G., Tullberg, J., and Antille, D. (2019). Machinery Evolution for Conservation Agriculture. In J. Pratley and J. Kirkegaard (Eds.), “Australian Agriculture in 2020: From Conservation to Automation” pp. 81-106 (Agronomy Australia and Charles Sturt University: Wagga Wagga). ISBN-13: 978-0-6485819-0-1. http://www.csu.edu.au/research/grahamcentre.

[36] Santos, S. and Kienzle, J. (2020). Agriculture 4.0—Agricultural robotics and automated equipment for sustainable crop produc-tion. Integrated Crop Management, Vol. 24. Rome, FAO. ISSN 1020-4555.

[37] Miranda, A. (2020). Impact of mechanized rice transplant technology. Cuban Journal of Public and Business Administration. September-December 2020; IV (3): 334-349 [Consulted 20 February 2021] Available at: https://apye.esceg.cu/index.php/apye/article/view/143.

[38] Paneque, P., Fernández, C., Miranda, A., Morejón, Y., anad Gómez, V. (2019). Current situation of agricultural mechanization and conservation agriculture in Latin America. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 2019, Vol. 50, No. 2, pp. 13-19. ref.35. ISSN : 0084-5841. 

[39] Miranda, A., Paneque, P., Abraham, N., and Suárez, M. (2009). Comparativeanalysis of the total energycosts, exploitation and fuel consumption of rice cultivation in dry technologies and direct flooding. Agricultural Technical Sciences Magazine, 2009, 18(3): 70-75. Recuperado de: https://www.redalyc.org/articulo.oa?id=93215944013.

[40] Paneque, P., Miranda, A., Abraham, N., and Suárez, M. (2009). Determination of energy and operatingcosts of the dry rice cultivation system. Agricultural Technical Sciences Magazine, 2009, 18(1): 7-10. [consulted 20 January 2020] Available in: http://www.redalyc.org/articulo.oa?id=93215240002.

How to cite this paper

Machinery for Direct Sowing of Rice in Agricultural Conditions

How to cite this paper: Calixto Domínguez Vento, Augusto Guilherme de Araújo, Alexander Miranda Caballero, Guillermo Díaz López, Amaury Rodríguez-Gonzáles. (2021) Machinery for Direct Sowing of Rice in Agricultural ConditionsInternational Journal of Food Science and Agriculture5(3), 471-481.

DOI: https://dx.doi.org/10.26855/ijfsa.2021.09.018