References
[1] Sergé, A., Bailly, A. L., Aurrand-Lions, M., Imhof, B. A., Irla, M. (2015). For 3D: Full organ reconstruction in 3D, an automatized tool for deciphering the complexity of lymphoid organs. J Immunol Methods, 2015, 424: 32-42.
[2] Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murry.
[3] Nachtigall, W. (1997). Exploring with the microscope: a book of discovery and learning. London: Sterling Publica-tions.
[4] Savile, B., Bracegirdle, B. (1998). Introduction to light microscopy. New York: Springer.
[5] Van Helden, A., Dupré, S., Rob, V. G., Zuidervaart, H. (eds). (2011). The origins of the telescope. Amsterdam: The Amsterdam University Press.
[6] His, W. (1880). Anatomie menschlicher Embryonen. Leipzig: Vogel.
[7] Kastschenko, N. (1886). Methode zur genauen rekonstruktion kleinerer makroskopischer gegenstande. Arch Anat Physiologie Abteilung ,1886; 1: 388-394.
[8] Odhner, T. (1911). Zum naturlichen System der digenen Trematoden IV. Zool Anz, 1911; 38: 513-531.
[9] Ohta, Y., Millhouse, E. W. (1967). Glass plate reconstruction from serial sections used in the study of neonatal bi-liary atresia. In: Stereology (Elias H ed). Berlin: Springer; 1967: pp. 302-303.
[10] Ward, S., Thomson, N., White, J. G., Brenner S. (1975). Electron microscopical reconstruction of the anterior sen-sory anatomy of the nematode, Caenorhabditis elegans. J Comp Neuro, 1975; 160: 313-337.
[11] Brenner, S. (2009). In the beginning was the worm. Genetics, 2009; 182: 413-415.
[12] Teutsch, H. F., Schuerfeld, D., Groezinger, E. (1999). Three-dimensional reconstruction of parenchymal units in the liver of the rat. Hepatology, 1999; 29: 494-505.
[13] Woodward, J. D., Maina, J. N. (2005). A 3D digital reconstruction of the components of the gas exchange tissue of the lung of the muscovy duck, Cairina moschata. J Anat, 2005; 206: 477-492.
[14] Woodward, J. D., Maina, J. N. (2008). Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three-dimensional reconstruction. J Microsc, 2008; 230: 84-93.
[15] Song, W. C., Hu, K. S., Kim, H. J., Koh, K. S. (2007). A study of the secretion mechanism of the sebaceous gland using three-dimensional reconstruction to examine the morphological relationship between the sebaceous gland and the arrector pili muscle in the follicular unit. British J Dermatol, 2007; 157: 325-330.
[16] Sun, K., Zhang, J., Chen, T., Chen, Z., Chen, Z., Li, Z., H., Hu, P. (2009). Three-dimensional reconstruction and visualization of the median nerve from serial tissue sections. Microsurgery, 2009; 29: 573-577.
[17] Penczek, P. A. (2010). Fundamentals of three-dimensional reconstruction from projections. Methods in Enzymol, 2010; 482: 1-33.
[18] Wu, X., Yu, Z., Liu, N. (2012). Comparison of approaches for microscopic imaging of skin lymphatic vessels. Scanning, 2012; 34: 174-180.
[19] Onozato, M. L., Klepeis, V. E., Yagi, Y., Mino-Kenudson, M. (2012). A role of three-dimensional (3D)- recon-struction in the classification of lung adenocarcinoma. Anal Cell Pathol, 2012; 35: 79-84.
[20] Miranda, K., Girard-Dias, W., Attias, M., de Souza, W., Ramos, I. (2015). Three-dimensional reconstruction by electron microscopy in the life sciences: an introduction for cell and tissue biology. Mol Reprod Dev, 2015; 82: 530-547.
[21] Baghaie, A., Tafti, A. P., Owen, H. A., D’Souza, R. M., Yu, Z. (2017). Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation. PLoS One, 2017; 12(4): e0175078.
[22] Chozinski, T. J., Mao, C., Halpern, A. R., Pippin, J. W., Shankland, S. J., Alpers, C. E., Najafian, R., Vaughan, J. G. Volumetric, nanoscale optical imaging of mouse and human kidney via expansion microscopy. Sci Rep., 2018; 8:10396. (doi 10.1038/s41598-018-28694-2).
[23] Kartasalo, K., Latonen, L., Vihinen, J., Visakorpi1, T., Nykter, M., Ruusuvuoril, P. (2018). Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics, 2018; 34: 3013-3021.
[24] Oliveira, M., Duarte, S. B., Giacomini, G., Pereira, P. C. M., de Souza, L. R., Miranda, J. R. A., Pina, D. R. A lung image reconstruction from computed radiography images as a tool to tuberculosis treatment control. J Venom Animal Toxins Incl Trop Dis, 2019; 25: e144918. (doi.org/10.1590/1678-9199-jvatitd-a449-19)
[25] Zhou, J. (1991). Visualization of four dimensional space and its applications (PhD Thesis; Purdue University Tech-nical Report); Number 91-084:1991.
[26] Lorenz, U. J., Zewail, A. Observing liquid flow in nanotubes by 4D electron microscopy. Science, 2014; 344: 1496-1500.
[27] Bissell, M. J. (2017). Goodbye flat biology—time for the 3rd and the 4th dimensions. J Cell Sci., 2017; 130: 3-5.
[28] Turing, A. M. (1952). The chemical basis of morphogenesis. Philos Trans R Soc (Lond) B, 1952; 237: 37-72.
[29] French, R. (1988). Invention and evolution design in nature and engineering. Cambridge: Cambridge University Press; 1988.
[30] Sung, W. (2018). Statistical physics of biological matter. Dordrecht: Springer.
[31] Sharp, T. A., Merkel, M., Manning, M. L., Liu, A. J. (2019). Inferring statistical properties of 3D cell geometry from 2D slices. PLoS One, 2019; 14, e0209892. (doi.org/10.1371/journal.pone.0209892)
[32] Murakami, M. (2012). Signaling required for blood vessel maintenance: molecular basis and pathological manife-stations. Int J Vasc Med Article 2012. (doi:10.1155/2012/293641)
[33] Simons, M., Gordon, E., Claesson-Welsh L. (2016). Mechanisms and regulation of endothelial VEGF receptor sig-naling. Nature Rev Mol Cell Biol, 2016; 17(10). (doi: 10.1038/nrm.2016.87)
[34] Lee, G. Y., Keny, P. A., Lee, E. H., Bissell, M. J. (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods, 2007; 4: 359-365.
[35] Glauco, S. (2010). Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotech, 2010; 5: 291-296.
[36] Baker, B. M., Chen, C. S. (2012). Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J Cell Sci., 2012; 125: 3015-3024.
[37] Edmondson, R., Broglie, J., Adcock, A., Yang, L. (2014). Three-dimensional cell culture systems and their applica-tions in drug discovery and cell-based biosensors. Assay Drug Dev Technol, 2014; 12: 207-218.
[38] Zanoni, M., Piccinini, F., Arienti, C., Zamagni, A., Santi, S., Polico, R., Bevilacqua, A., Tesei, A. (2016). 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep, 2016; 6: 19103. (doi: 10.1038/srep19103)
[39] Powell, K. (2017). Adding depth to cell culture. Sci Technol Feature, 2017; 361; 6402.
[40] Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., Solomon, P. F. D. (2015). 3D cell culture systems: advantages and applications. J Cell Physiol, 2015; 230: 16-26.
[41] Cavo, M., Fato, M., Peñuela, L., Beltrame, F., Raiteri, R., Scaglione, S. (2016). Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep, 2016; 6: 35367. (doi:10.1038/srep35367)
[42] Fang, Y., Eglen, R. (2017). Three-dimensional cell cultures in drug discovery and development. SLAS Discov: Ad-vancing Life Sci., 2017; 22: 456-472.
[43] Langhans, S. (2018). Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol, 2018; 22: 456-472.
[44] Haycock, J. W. (2011). 3D cell culture: a review of current approaches and techniques. Methods Molec Biol, 2011; 695: 1-15.
[45] Levinthal, C., Ware, R. (1972). Three-dimensional reconstruction from serial sections. Nature, 1972; 236: 207-209.
[46] Perkins, W. J., Green, R. J. (1982). Three-dimensional reconstruction of biological sections. J Biomed Engineer, 1982; 4: 37-43.
[47] Latamore, G. B. (1983). Creating 3-D models for medical research. Comput Graphics World, 1983; 5: 31-38.
[48] Mercer, R. R., Crapo, J. D. Structure of the gas exchange region of the lungs determined by three- dimensional re-constructions. In: Toxicology of the lung (Gardner DE, Crapo JD, Massaro EJ eds). New York; Raven Press: pp. 43-70.
[49] Xu, Y. H., Lahvis, G., Edwards, H., Pilot, H. C. (2004). Three-dimensional reconstruction from serial sections in PC-windows platform by using 3D_ viewer. Comput Methods Programs Biomed, 2004; 76: 143-154.
[50] Anderson, J. R., Wilcox, M. J., Wade, P. R., Barrett, S. F. (2003). Segmentation and 3D reconstruction of biological cells from serial slice images. Biomed Sci Instrument, 2003; 39: 117-122.
[51] Rosenhain, S., Magnuska, Z. A., Yamoah, G. G., Rawashdeh, W. A., Kiessling, F., Gremse, F. (2018). A preclinical micro-computed tomography database including 3D whole body organ segmentations. Sci Data 5 2018. (Article number 180294)
[52] Vints, K., Vandael, D., Baatsen, P., Pavie, B., Vernaillen, F., Corthout, N., Rybakin, V., Munck, S., Gounko, N. V. Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Sci Rep., 2019; 9(1). (Article number 130) (doi 10.1038/s41598-018-373777-x)
[53] Herman, G. T. (2009). Fundamentals of computerized tomography: image reconstruction from projection, 2nd edition. Berlin; Springer.
[54] Diaspro, A. E. (ed.) (2001). Confocal and two-photon microscopy: foundations, applications and advances. Wiley; VCH): 2001.
[55] Handschuh, S., Schwaha, T., Metscher, B. D. (2010). Showing their true colors: a practical approach to volume rendering from serial sections. BMC Dev Biol, 2010; 10: 41. (doi 10.1186/1471-213X-10-41)
[56] Wang, C. W., Gosno, E. B., Li, Y. S. (2015). Fully automatic and robust 3D registration of serial-section microscopic images. Sci Rep, 2015; 5: 15051. (doi 10.1038/srep15051)
[57] Wang, Y., Xu, R., Luo, G., Wu, J. (2015). Three-dimensional reconstruction of light microscopy image sections: present and future. Front Med., 2015; 9:30-45.
[58] Born, G. (1883). Die Plattenmodelliermethode. Arch Mikrosk Anat, 1883; 22: 584-599.
[59] Strasser, H. (1886). Ueber das Studium der Schnittserien und über die Hülfsmittel, welche die Reconstruction der zerlegten Form erleichtern. Zeitschrifft Wissen Mikrosk, 1886; 3: 179-195.
[60] Strasser, H. (1987). Ueber die Methoden der plastischen Rekonstruktion. Zeittschrift Wissen Mikrosk, 1987; 4: 168-208.
[61] Weninger, W. J., Mohun, T. (2002). Phenotyping transgenic embryos: a rapid 3-D screening method based on epi-scopic fluorescence image capturing. Nature Genetics, 2002; 30: 59-65.
[62] Ewald, A. J., McBride, H., Reddington, M., Fraser, S. E., Kerschmann, R. (2002). Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev Dyn, 2002; 225: 369-375.
[63] Rosenthal, J., Mangal, V., Walker, D., Bennett, M., Mohun, T. J., Lo, C. W. (2004). Rapid high resolution three-dimensional reconstruction of embryos with episcopic fluorescence image capture. Birth Defects Res C Em-bryol Today, 2004; 72: 213-223.
[64] Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. (2008). Reconstruction of zebrafish early embryonic de-velopment by scanned light sheet microscopy. Science, 2008; 322: 1065-1069.
[65] Tsuchiya, M., Yamada, S. (2014). High-resolution histological 3D-imaging: episcopic fluorescence image capture is widely applied for experimental animals. Congenit Anom (Kyoto), 2014; 54: 250-251.
[66] Takaishi, R., Aoyama, T., Zhang, X., Higuchi, S., Yamada, S., Takakuwa, T. (2014). Three-dimensional reconstruc-tion of rat knee joint using episcopic fluorescence image capture. Osteoarthtitis Cartilage, 2014; 22: 1401-1409.
[67] Kong, W., Du, W., Liu, K., Liu, H., Zhao, Z., Pu, M., Wang, C., Luo, X. (2018). Surface imaging microscopy with turntable penetration depth as short as 20 nm by employing the hyperbolic metamaterials. J Materials Chem C., 2018; 6(7). (doi: 10.1039/C7TC04748G)
[68] Geyer, S. H., Weninger, W. J. (2019). High-resolution episcopic microscopy (HREM): looking back on 13 years of successful generation of digital volume data of organic material for 3D visualisation and 3D display. Appl Sci., 2019; 9: 3826. (doi:10.3390/app9183826)
[69] Braumann, U. D., Scherf, N., Einen, J., Horn, L. C., Wentzensen, N., Loeffler, M., Kuska, J. P. (2007). Large histo-logical serial sections for computational tissue volume reconstruction. Methods Inf Med., 2007; 46: 614-622.
[70] Roberts, N., Magee, D., Song, Y., Brabazon, K., Shires, M., Crellin, D., Orsi, N. M., Quirke, R., Quirke, R., Quirke, P., Treanor, D. (2012). Towards routine use of 3D histopathology as a research tool. Am J Pathol., 2012; 180: 1835-1842.
[71] Liu, B., Gao, X. L., Yin, H. X., Luo, S. Q., Lu, J. (2007). A detailed 3D model of the guinea pig cochlea. Brain Struct Funct, 2007; 212: 223-230.
[72] Deluzio, T. G. B., Seifu, D. G., Mequanint, K. (2011). 3D scaffolds in tissue engineering and regenerative medicine: beyond structural templates? Pharmaceut Biopro, 2011; 1: 267-281.
[73] Yu, Y., Moncal, K. K., Li, J., Peng, W., Rivero, I., Martin, J. A., Ozbolat, I. T. (2016). Three-dimensional bioprinting using self-assembling scalable scaffold-free tissue strands as a new biolink. Sci Rep, 2016; 6: 28714. (doi: 10.1038/srep28714)
[74] Jensen, G., Morrill, C., Huang, Y. (2018). 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharmaceut. Sinica B, 2018; 8: 756-766.
[75] Duncker, H. R. (1971). The lung-air sac system of birds: a contribution to the functional anatomy of the respiratory apparatus. Ergeb Anat Entwicklungsgesch, 1971; 45: 1-171.
[76] Duncker, H. R. (1972). Structure of avian lungs. Respir Physiol, 1972; 14: 44-63.
[77] Duncker, H. R. (1974). Structure of avian respiratory tract. Respir Physiol, 1974; 22: 1-19.
[78] Scheid, P. (1979). Mechanisms of gas exchange in bird lungs. Rev Physiol Biochem Pharmacol, 1979; 86: 137-186.
[79] McLelland, J. (1989). Anatomy of the lungs and air sacs. In: Form and function in birds, vol. IV (King AS, McLelland J eds). London; Academic Press: 1989: pp. 221-279.
[80] Powell, F. L., Hopkins, S. R. (2004). Comparative physiology of lung complexity: implications for gas exchange. News Physiol Sci., 2004; 19: 55-60.
[81] Maina, J. N. (2005). The lung air sac system of birds: development, structure, and function. Heidelberg; Springer.
[82] Maina, J. N. (2006). Development, structure and function of a novel respiratory organ, the lung-air sac system of birds: To go where no other vertebrate has gone. Biol Rev., 2006; 81: 545-579.
[83] Maina, J. N. (2017). Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight. Biol Rev., 2017; 92: 1475-1504.
[84] Harvey, E. P., Ben-Tal, A. (2015). Robust unidirectional airflow through avian lungs: new insights from a piecewise linear mathematical mode. PLoS Comput Biol, 2015; 12(2): e1004637.
[85] Coitier, V. (1573). Anatomie avium. Externum et Internarum Praecipalium Humani Corporis Partium Tabulae atque Anatomicae Exercitationes Observationesque Varieae. Germany; Norimbergae: 1573; pp. 130-133.
[86] Maina, J. N. (2011). Bioengineering aspects in the design of gas exchangers: comparative evolutionary, morphological, functional, and molecular perspectives. Heidelberg: Springer.
[87] Fedde, R. (1980). The structure and gas flow pattern in the avian lung. Poult Sci., 1980; 59: 2642-2653.
[88] Wang, N., Banzett, R. B., Nations, C. S., Jenkins, E. A. (1992). An aerodynamic valve in the avian primary bron-chus. J Exp Biol, 1992; 262: 441-445.
[89] Maina, J. N., Singh, P., Moss, E. A. (2009). Inspiratory aerodynamic valving occurs in the ostrich, Struthio camelus lung: computational fluid dynamics study under resting unsteady state inhalation. Respir Physiol Neurobiol, 2009; 169: 262-270.
[90] Maina, J. N. The Morphometry of the avian lung. In: Form and function in birds, vol. 4 (King AS, McLelland J eds). London; Academic Press: pp. 307-368.
[91] Maina, J. N., King, A. S., Settle, J. G. (1989). An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Philos Trans R Soc Lond B, 1989; 326: 1-57.
[92] Tucker, V. A. Energetics of natural avian flight. In: Avian energetics (Paynter RA ed). Cambridge (MA); Nuttal Ornithological Club: pp. 298-333.
[93] Maina, J. N. (2000). What it takes to fly: the novel respiratory structural and functional adaptations in birds and bats. J Exp Biol, 2000; 203: 3045-3064.
[94] Altshuler, D. L., Dudley, R. (2006). The physiology and biomechanics of avian flight at high altitude. Integr Comp Biol, 2006; 46: 4-8.
[95] Scott, G. R. (2011). Elevated performance: the unique physiology of birds that fly at high altitudes. J Exp Biol, 2011; 214: 2455-2462.
[96] Scott, G. R., Dawson, N. J. (2017). Flying high: The unique physiology of birds that fly at high altitudes. In: The biology of the avian respiratory system: evolution, development, structure and function (Maina JN ed). Heidelberg; Springer; 2017: pp. 113-128.
[97] Laguë, S. L. (2017). High altitude champions: birds that live and migrate at altitude. J Appl Physiol 2017; 123: 942-950.
[98] Senner, N. R., Stager, M., Verhoeven, M. A., Cheviron, Z. A., Piersma, T., Bouten, W. (2018). High-altitude shorebird migration in the absence of topographical barriers: avoiding high air temperatures and searching for profitable winds. Proc. R. Soc. B, 2018; 285: 20180569.
[99] Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinfornatics, 2017; 18: 529.
[100] Frank, J., Radermacher, M., Pencze, P., Zhu, J., Li, Y., Ladjadj, M., Leith, A. (1996). SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol, 1996; 116: 190-199.
[101] Maina, J. N., Woodward, J. D. (2009). Three-dimensional serial section computer reconstruction of the arrange-ment of the structural components of the parabronchus of the ostrich, Struthio camelus lung. Anat Rec., 2009; 292: 1685-1698.
[102] Rau, T. S., Hussong, A., Herzog, A., Majdani, O., Lenarz, T., Leinung, M. (2011). Accuracy of computer-aided geometric 3D reconstruction based on histological serial microgrinding preparation. Comput Methods Biomech Biomed Engineer, 2011; 14: 581-594.
[103] Pintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W., Gossard, D. C. (2010). Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol, 2010; 170: 427-38.
[104] Pattersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem, 2004; 5: 1605-1612.
[105] Abdalla, M. A. (1989). The blood supply to the lung. In: Form and function in birds, vol. 4 (King AS, McLelland J eds). San Diego; Academic Press; 1989: pp. 281-306.
[106] Abdalla, M. A., King, A. S. (1975). The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol, 1975; 23: 267-290.
[107] Abdalla, M. A., King, A. S. (1976). Pulmonary arteriovenous anastomoses in the avian lung: do they exist. Respir Physiol, 1976; 27: 187-191.
[108] Abdalla, M. A., King, A. S. (1976). The functional anatomy of the bronchial circulation of the domestic fowl. J Anat, 1976; 121: 537-550.
[109] Abdalla, M. A., King, A. S. (1977). The avian bronchial arteries: species variations. J Anat, 1977; 123: 697-704.
[110] King, A. S. (1966). Structural and functional aspects of the avian lung and its air sacs. Internat J Rev Gen Exp Zool, 1966; 2: 171-267.
[111] Maina, J. N. (1982). A scanning electron microscopic study of the air and blood capillaries of the lung of the do-mestic fowl (Gallus domesticus). Experientia, 1982; 35: 614-616.
[112] Maina, J. N. (1988). Scanning electron microscopic study of the spatial organization of the air- and the blood con-ducting components of the avian lung, Gallus gallus variant domesticus. Anat Rec., 1988; 222: 145-153.
[113] Makanya, A. N., Kavoi, B. M., Djonov, V. (2014). Three-dimensional structure and disposition of the air conduct-ing and gas exchange conduits of the avian lung: the domestic duck (Cairina moschata). J Anat, 2014; 1: 1-9.
[114] West, N. H., Bamford, O. S., Jones, D. R. (1977). A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res, 1977; 176: 553-564.
[115] Makanya, A. N., Djonov, V. (2008). Development and spatial organization of the air conduits in the lung of the domestic fowl, Gallus variant domesticus. Microsc Res Tech, 2008; 71: 689-702.
[116] Makanya, A. N., Djonov, V. (2009). Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol, 2009; 106: 1959-69.
[117] Pandey, A. K., Praveen, P. K., Ganguly, S., Para, P. A., Wakchaure, R., Saroj, K., Mahajan, T. (2015). Avian res-piratory and physiology with its interspecies variations: a review. World J Pharmacol Life Sci, 2015; 1: 137-148.
[118] Radu, C., Radu, L. (1971). Le dispositive vasculaire du poumon chez les oiseaux domestiques. Revue de Medecine Veterinaire, 1971; 122: 1219-1226.
[119] Weibel, E. R. (1984). The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge (MA); Harvard University Press: 1984.
[120] Schittny, J., Burri, P. H. (2003). Morphogenesis of the mammalian lung: aspects of structure and extracellular ma-trix. In: Lung development and regeneration (Massaro DJ, Massaro GC, Chambon P eds). New York; Marcel; 2003: pp. 275-316.
[121] Moura, R. S., Correia-Pinto, J. (2017). Molecular aspects of avian lung development. In: The biology of the avian respiratory system: evolution, development, structure and function (Maina JN ed). Berlin; Springer; 2017: pp. 129-146.
[122] Duncker, H. R. (1978). Development of the avian respiratory and circulatory systems. In: Respiratory function in birds, adult and embryonic (Duncker HR ed). Berlin; Springer; 1978: pp. 260-273.
[123] Maina, J. N. (2003). A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Tissue Cell, 2003; 35: 375-391.
[124] Maina, J. N. (2003). Developmental dynamics of the bronchial- (airway) and air sac systems of the avian respira-tory system from days 3 to 26 of life: a scanning electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Anat Embryol, 2003; 207: 119-134.
[125] Burri, P. H. (1984). Fetal and postnatal development of the lung. Ann Rev Physiol, 1984; 46: 617-628.
[126] Burri, P. H. (1985). Development and growth of the human lung. In: Handbook of physiology, section 3: the res-piratory system (Fishman AP, Fisher AB eds). Bethesda (MD); American Physiological Society; 1985: pp. 1-46.
[127] Hughes, L. C., Archer, C. W., Gwynn, I. (2005). The ultrastructure of mouse articular cartilage: collagen orienta-tion and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Europ Cells Materials, 2005; 9: 68-84.
[128] Woodward, J. D., Wepf, R., Sewell, B. T. (2009). Three-dimensional reconstruction of biological macromolecular complexes from in-lens scanning electronmicro-graphs. J Microsc, 2009; 234: 287-292.
[129] Peddie, C. J., Collinson, L. M. (2014). Exploring the third dimension: volume electron microscopy comes of age. Micron, 2014; 61: 9-19.