magazinelogo

Journal of Electrical Power & Energy Systems

ISSN Online: 2576-053X Downloads: 29849 Total View: 348039
Frequency: semi-annually ISSN Print: 2576-0521 CODEN: JEPEEG
Email: jepes@hillpublisher.com

Volumes & Issues

Current Issue

Article Open Access http://dx.doi.org/10.26855/jepes.2021.04.001

Improving Adiabatic Film Cooling Effectiveness Using a Chevron Shape Ramp

Grine Mustapha1,*, Ben Ali Kouchih Fatima2, Boualem Khadidja2, Azzi Abbès2

1ELM Department, Institute of Maintenance and Industrial Safety, Oran 2 University, Oran, Algeria.

2Laboratoire Aero Hydrodynamique Navale, (LAHN) USTO-MB, Oran, Algeria.

*Corresponding author: Grine Mustapha

Published: April 29,2021

Abstract

In this study, two geometrical configurations are considered for purpose comparison, which are the base line case, and the case with an upstream chevron with rounded edge. The ensemble-averaged Navier Stokes equations closed by the k-ε RNG turbulence model and standard wall function are used in frame of the finite volume method, computational Fluid Dynamic (CFD) code represented by the commercial programmers ANSYS CFX 14.0. The work consists of a numerical computation study of a film cooling on a flat plate. The goal is to verify the effectiveness of the present code by applying the same boundary conditions on the same geometry. Furthermore, another dimension of the physical domain was displayed by adding the concept of upstream chevron fence. Three blowing ratios are considered (0.50, 1.00, and 1.50) and length-to-diameter ratios 1.75. Results are shown in form of centerline adiabatic film cooling effectiveness. The most important element in this study is the film cooling effectiveness. This variable will be the subject of most of the results in this work.

References

[1] P. M. Ligrani, J. M. Wigle, S. Ciriello, and S. M. Jackson. (1994). Film-Cooling from Holes with Compound Angle Orientations: Part 1: Results Downstream of Two Staggered Rows of Holes with 3D Spanwise Spacing. Journal of Heat Transfer, vol. 116, pp. 341-352, 1994.

[2] P. M. Ligrani, J. M. Wigle, and S. M. Jackson. (1994). Film-Cooling from Holes with Compound Angle Orientations: Part 2: Results Downstream of a Single Row of Holes with 6D Spanwise Spacing. Journal of Heat Transfer, vol. 116, pp. 353-362, 1994.

[3] Salcudean, He. P. M. and Gartshore, I. S. (1995). Computation of Film Cooling for the Leading Edge Region of a Turbine Blade Model, ASME Paper 95-GT-20, ASME Turbo Expo 1995, Houston, Texas, June 1995.

[4] Fadéla Nemdili, Abbès Azzi, Georgios Theodoridis and Bassam Ali Jubran. (2008). Reynolds Stress Transport Modeling of Film Cooling at the Leading Edge of a Symmetrical Turbine Blade Model. Heat Transfer Engineering, 29(11): 950-960, 2008.

[5] Q. Zhang and P. M. Ligrani. (2006). Numerical Predictions of Stanton Numbers, Skin Friction Coefficients, Aerodynamic Losses, and Reynolds Analogy Behavior for a Transsonic Turbine Vane, Numerical Heat Transfer, Part A: Applications, Volume 49, Issue 3, February 2006, pp. 237-256.

[6] P. M. Ligrani and J. S. Lee. (1996). Film Cooling from Two Staggered Rows of Compound Angle Holes at High Blowing Ratios. International Journal of Rotating Machinery, vol. 2, no. 3, pp. 201-208, 1996.

[7] Bunker, R. S. (2005). “A Review of Shaped Hole Turbine Cooling Technology.” ASME J. Heat Transfer, 127, pp. 441-453.

[8] Ekkad, S. V., Nasir, H., and Acharya, S. (2003). “Flat Surface Film Cooling from Cylindrical Holes with Discrete Tabs,” J. Thermophys. Heat Transfer, 17(3), pp. 304-312.

[9] Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D., Rawlinson, A. J. (2002). A converging slot-hole film-cooling geome-try-part 1: low-speed flat-plate heat transfer and loss. ASME J Turbomachinery, 124: 453-460.

[10] Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D., Rawlinson, A. J. (2002). A converging slot-hole film-cooling geome-try—part 2: transonic nozzle guide vane heat transfer and loss. ASME J Turbomachinery, 124: 461-471.

[11] Abbes Azzi and Bassam A. Jubran. (2007). Numerical modelling of film cooling from converging slot-hole. Heat Mass Transfer, (2007), 43: 381-388.

[12] Bunker, R. S. (2002). Film Cooling Effectiveness Due to Discrete Holes Within Transverse Surface Slots, Proceedings IGTI Turbo Expo, Amsterdam. The Netherlands, ASME Paper No. GT-2002–30178.

[13] S. Baheri and B. A. Jubran. (2012). The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade from Trenched Shaped Holes. J. Heat& Mass Transfer, 05/2012; 48(5).

[14] Kelso, R. M., Lim, T. T., and Perry, A. E. (1996). “An Experimental Study of Round Jets in Cross-Flow,” J. Fluid Mech., 306, pp. 111-144.

[15] Haven, B. A., Yamagata, D. K., Kurosaka, M., Yamawaki, S., and Maya, T. (1997). “Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness,” ASME Paper No. 97-GT-45.

[16] Sangkwon Na Tom I-P. Shih. (2007). Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp, Journal of Heat Transfer, vol. 129, pp. 464-471, 2007.

[17] ANSYS CFX Introduction, Release 14.0, November 2011.

[18] X. Z. Zhang and I. Hassan. (2006). Film Cooling Effectiveness of an Advanced-Louver Cooling Scheme for Gas Turbines, J. Thermophys. Heat Transfer, vol. 20, pp. 754-763, 2006.

[19] Victor Yakhot1 and Leslie M. Smith. (1992). The Renormalization Group, the e-Expansion and Derivation of Turbulence Models. Journal of Scientific Computing, Vol. 7, No. l, 1992, Vi.

[20] A. Zeghib and Ktalbi. (2008). Comparaison des différents modèles de turbulence d’un écoulement aérodynamique dans un cyclone, Revue des Energies Renouvelables CISM’08 Oum El Bouaghi, (2008), pp. 311-324.

[21] Kuldeep Singh, B. Premachandran, and M. R. Ravi. (2017). Experimental and numerical studies on film cooling with reverse backward coolant injection. J Thermal Science, vol. 111, pp. 390-408, 2017.

[22] Sinha, D. Bogard, and N. Crawford. (1991). Film Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio. J. Turbomach., vol. 113, pp. 442-449, 1991.

[23] Antar M. M. Abdala, Fifi N. M. Elwekeel. (2017). Pressure distribution effects due to chevron fences on film cooling effec-tiveness and flow structures. Applied Thermal Engineering, 110(2017), 616-629.

How to cite this paper

Improving Adiabatic Film Cooling Effectiveness Using a Chevron Shape Ramp

How to cite this paper: Grine Mustapha, Ben Ali Kouchih Fatima, Boualem Khadidja, Azzi Abbès. (2021) Improving Adiabatic Film Cooling Effectiveness Using a Chevron Shape Ramp. Journal of Electrical Power & Energy Systems5(1), 24-32.

DOI: http://dx.doi.org/10.26855/jepes.2021.04.001