International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 159999 Total View: 2550757
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article http://dx.doi.org/10.26855/jsfa.2018.01.002

Modelling the Impacts of Climate Change on Surface Runoff in Finchaa Sub-basin, Ethiopia

Mekonnen H. Daba *

Natural Resource Research Process, Bako Agricultura l Research Center, Bako, Ethiopia.

*Corresponding author: Mekonnen H. Daba, email:dabanok@gmail.com

Published: January 31,2018

Abstract

Climate change is possible to affect the water resources availability and hydrology of Finchaa Sub-basin. Climate change impacts are the main concern for sustainability of water management, water use activities and agricultural production throughout the world. Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. The objective of this study is to assess the impact of climate change on the surface runoff of Finchaa sub-basin located in upper Blue Nile Basin of Ethiopia. The General Circulation Model (GCM) derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) were used for the climate projection. The statistical Downscaling Model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the Soil and Water Assessment Tool (SWAT) model to simulate the corresponding future surface runoff in of Finchaa sub-basin. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight decreasing trend in precipitation for both A2a and B2a emission scenarios in sub-basin for all three bench mark periods. The result reveal that, average annual rainfall in the watershed might reduce up to 9.84%, 23.29% and 41.51% and 9.27 %, 20.71% and 35.37% in 2020s, 2050s, and 2080s for A2a and B2a emission scenarios, respectively. The average annual maximum temperature might increase by 0.250C, 0.600C and 1.090C and 0.500C, 0.260C and 0.860C in 2020s, 2050s and 2080s for A2a and B2a emission scenario respectively. The average annual minimum temperature might increase by 0.30C, 0.800C and 0.920C and 0.40 0C, 0.66 0C and 1.10C in 2020s, 2050s and 2080s for A2a and B2a emission scenario respectively. Impact analysis was made with the downscaled temperature and rainfall time series as input to the SWAT model for the future three benchmark periods. As a result, at the outlet of the watershed the projected on average annual runoff reduced by 4.29%, 10.62%, 18.07% and 8.27%, 8.58%, 16.69% for the 2020s,2050s and 2080s for both A2a and B2a emissions scenarios respectively. This report includes strategy recommendations to communities, policy and decision makers for measuring and enhancing effective adaptation option for future climate change impacts on surface runoff. Such study provides appropriate insights into future surface water resources, to develop effective eco-environment management plans and strategies in the face of climate change.

References

[1] Arnell, NW. (1999) Climate change and global water resources. Glob Environ Change 9:31–49.

[2] Gleick, PH. (2000) A looks at twenty-first century water resources development. Water Int 25(1):127–138.

[3] Lettenmaier,  DP. Wood,  AW.  Palmer,  RN.,  Wood,  EF.  Stakhiv,  EZ.  (1999) Water  resources implications of  global warming: a US regional perspective. Clim Change 43:537–579.

[4] Xu,  CY.  Singh,  VP.  (2004)  Review  on  regional  water  resources  assessment  models  under stationary  and  changing climate. Water Resource Manage 18:291–612.

[5] Gan,  TY.  (2000)  Reducing  vulnerability  of  water  resources  of  Canadian  prairies  to  potential  droughts  and  possible climatic warming. Water Resour Manage 14(2):111–135.

[6] Xu, CY. (2000) Modeling    the    effects    of    climate    change    on water    resources    in    central    Sweden. Wa-ter Resource.    Manage.    14,177–189.

[7] Arora,  M.,  Singh,  P.,  Goel,  NK.,  Singh,  RD.  (2008)  Climate  variability  influences  on  hydrological  responses  of  a large Himalayan basin. Water Resour Manage 22:1461–1475.

[8] Lioubimtseva, E., Henebry, G. (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73(11):963–977.

[9] IPCC. (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry M.L., Canziani, O.F., Palutikof, J.P.,     van     der     Linden,     P.J.,     Hanson,     C.E.     CambridgeUniversity     Press,     Cambridge,     UK,     976p.   http://www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html.

[10] Setegn, S.G., Srinivasan, R., Dargahi, B. (2011) Climate Change Impact on Agricultural Water Resources Variability in the Northern Highlands of Ethiopia. Department of Earth and Environment, Florida International University, Mi-ami, FL 33199, USA. DOI 10.1007/978-94-007-0689-7_12.

[11] Daba, M., Rao, GN. (2016) Evaluating Potential Impacts of Climate Change on Hydro-meteorological Variables in Upper  Blue  Nile  Basin,  Ethiopia:  A  Case  Study  of  Finchaa  Sub-basin.  Journal  of  Environment  and  Earth  Science. 6(5), 48-57.    

[12] Kifle.  (1999)  Impact of climate  change  on the  water  resources of  Awash  River  Basin,  Ethiopia.    Climate  research, Vol. 12: 91–96, 1999.

[13] Behailu, S. (2004) Stream flow simulation for the upper awash basin.  Addis  Ababa University, Department of Civil Engineering, pp63-75.

[14] Mengistu. (2008) Regional flood frequency analysis for upper awash sub-basin (upstream of koka).    Master of Sci-ence (Engineering) of the Addis Ababa University, pp66-87.

[15] Surur,  AN.  (2010)  Simulated  impact  of  land  use  dynamics on  hydrology  during  a  20-year-period  of  Beles  basin  in Ethiopia.  Masters of  Science  Thesis  in  Water  System  Technology  Department  of  Land  and  Water  Resources  Engi-neering, SE-100 44 STOCKHOLM, Sweden.

[16] Mengistu,DT., Sorteberg, A. (2012) Sensitivity of SWAT simulated stream flow to climatic changes within the East-ern Nile River basin, Hydrol. Earth Syst. Sci., 16, 391–407, 2012.

[17] Kurkura, M., Michael, Y. (2011) Water balance of upper awash basin based on satellite-derived data (remote sensing). M. Sc. Thesis, Addis Ababa institute of technology department of civil Engineering.

[18] Taddese, G., Sonder, K., Peden, D. (2012) The water of the Awash River basin a future challenge to Ethiopia. ILRI, Addis Ababa Ethiopia, pp13.

[19] Bang, HQ.,Quan, NH., Phu,  VL. (2013) Impacts of Climate Change on Catchment Flows and  Assessing Its Impacts on Hydropower in Vietnam’s Central Highland Region. Global Perspectives on Geography (GPG) Volume 1 Issue 1, February 2013, www.as-se.org/gpg.

[20] Demissie, TA., Saathoff, F., Sileshi, Y., Gebissa, A. (2013) Climate change impacts on the stream flow and simulated sediment flux to Gilgel Gibe 1 hydropower reservoir, Ethiopia. European International Journal of Science and Tech-nology, Vol.2 No.2.ISSN:2304-9693 www.cekinfo.org.uk/EIJST.

[21] Chekol,  DA.  (2007)  Application  of  SWAT  for  assessment of  spatial  distribution  of  water  resources  and  analyzing impact of  different  land  management  practices  on soil erosion  in  Upper  Awash  River  Basin  watershed.  Catchment, Lake Research (LARS 2007).

[22] Daniel, G. (2007) Determination of optimal rule For Finchaa reservoir, Ethiopia (MSc thesis, Addis Abeba University, AAU).

[23] Neitsch, SL., J.G. Arnold, JR., Kiniry, JR., Williams. (2002) Soil and water assessment tool theoretical documentation version 2000: Grassland, Soil and Water Research Laboratory, Temple, Texas.

[24] WEBB, WIGLEY. (1985) what past climates can indicate about a warmer world. In: projecting the climate effects of increasing carbon dioxide.    Washington, D.C., 237-257pp: Unites states department of Energy, office of Energy Re-search, DOE/ER-0237.

[25] WILBY, DAWSON.    (2007) Using    SDSM    Version    4.2    A    Decision    Support    tool    for    the Assessment of regional Climate Change Impacts User’s Manual. UK.

[26] Griensven, AV., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., Srinivasan, R. (2006) A global sensitivity analy-sis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1-4), 10-23.

[27] Nash, JE., Sutcliffe, JV. (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. Journal of Hydrology10: 282 –290. 

[28] Sintondji, L. (2005) Modeling the rainfall-runoff process in the Upper Ouémé catchment (Terou in Benin republic) in a context of global change: extrapolation from the local to the regional scale.    PhD Thesis in Hydrology and Envi-ronmental  management  of  the  Mathematics  and  the  Natural  Sciences  Faculty  of  the  University  of  Bonn.  Shaker Verlag GmbH. P.O. Box 101818. D-52018 Aachen Germany.

[29] Girma. (2012) Potential Impact of Climate and Land Use Changes on the Water Resources of the upper Blue Nile Ba-sin (PhD dissertation, Freie University of Berlin).

[30] Setegn, SG. David, R., Melesse, AM., Bijan, D., Ragahavan, S., Anders, W. (2011) Climate Change Impact on Agri-cultural   Water   Resources   Variability   in   the   Northern   Highlands   of   Ethiopia.   Nile   River   Basin,   DOI 10.1007/978-94-007-0689-7_12.

[31] C. McSweeney, M. new, G., Lizcano, Lu, X. (2010) The  UNDP Climate Change Country Profiles: Improving the ac-cessibility of observed and projected climate information for studies of climate change in de veloping countries. Bulle-tin of the American Meteorological Society, 91, 157–166.

[32] Beyene, T., Lettenmaier, DP.Kabat, P. (2010) Hydrologic Impacts of Climate Change on the Nile River Basin: Impli-cations of the 2007 IPCC Climate Scenarios. 100(3–4), 433–461, Doi:10.1007/s10584-009-9693-0. 

[33] Taye, V., Ntegeka, NP.Ogiramoi, P. Willems. (2011) Assessment of climate change impact on hydrological extremes in    two    source    regions    of    the    Nile    River    Basin.    Hydrol.    Earth    Syst.    Sci.,    15,    209–222,    2011. doi:10.5194/hess-15-209-2011.

[34] Lakemariam YW. (2015) Climate change impact on variability of rainfall intensity in the M. T. Upper Blue Nile Ba-sin. Hydrological Sciences and Water Security: Past, Present and Future (Proceedings of the 11th Kovacs Colloquium, Paris, France, June 2014). Doi: 10.5194/piahs-366-135-2015.

[35] Gebre,  SL.,  Tadele,  K.,  Mariam,  BG. (2015) Potential  Impacts  of  Climate  Change on  the  Hydrology  and  Water re-sources    Availability    of    Didessa    Catchment,    Blue    Nile    River    Basin,    Ethiopia.    J    GeolGeosci    4:193. doi:10.4172/2329-6755.1000193.

How to cite this paper

Modelling the Impacts of Climate Change on Surface Runoff in Finchaa Sub-basin, Ethiopia

How to cite this paper: Daba, M.H. (2018) Modelling the Impacts of Climate Change on Surface Runoff in Finchaa Sub-basin, Ethiopia. The Journal of the Science of Food and Agriculture, 2(1), 14-29.

DOI: http://dx.doi.org/10.26855/jsfa.2018.01.002