References
[1] Munekata PES, Pateiro M, Dominguez R, Nieto G, Kumar M, Dhama K, Lorenzo JM. Bioactive compounds from fruits as preservatives. Foods. 2023;12(2):343. doi:10.3390/foods12020343.
[2] Godos J, Vitale M, Micek A, Ray S, Martini D, Del Rio D, Riccardi G, Galvano F, Grosso G. Dietary polyphenol intake, blood pressure and hypertension: A systematic review and meta-analysis of observation studies. Antioxidants. 2019;8(6):152. doi:10.3390/antiox8060152.
[3] Cazarin CBB, Bicas JL, Pastore GM, Marostica-Jumior MR. Bioactive food components activity in mechanistic Approach. In: Anonymous, editor. Chapter One. p. 1-3. 2022.
[4] Baiyeri KP, Olajide K. Tree and fruit plants: recent evidence from literatures and regular cultivation culture. In: Khan MS, editor. Tropical Plant Species and Technological Interventions for Improvement. 2022. doi:10.5772/intechopen.104890.
[5] Saka J, Rapp I, Akinnifesi F, Victoria-Ndolo V, Mhango J. Physicochemical and organoleptic characteristics of Uapaca kirkiana, Strychnos cocculoides, Adansonia digitata and Mangifera indica fruit products. Int J Food Sci Technol. 2007;42(7):836-41.
[6] Sulieman AME. Azanza garckeana L; Distribution, composition, nutritive value and utilization. In: Anonymous, editor. Wild fruits, composition, nutritional value and products. Chapter 30. p. 379-93. 2019.
[7] Glew RS, Vanderjagt DJ, Chuang LT, Huang YS, Millson M, Glew RH. Nutrient content of four edible wild plants from West Africa. Plant Foods Hum Nutr. 2005; 60:187-93.
[8] Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A. Azanza garckeana (Frittoffm Exell et Hillc). Agroforestry Database Tree Reference and Selection Guide Version 4.0. 2009. Available from: http://www.worldagroforestry.org/treedb/AFTPDFS/Azanza_garckeana.
[9] Michael KG, Onyia LU, Jiduana SB. Evaluation of phytochemicals in Azanza garckeana (Goron tula seed). J Agric Vet Sci. 2015;8(5):71-4.
[10] Maroyi A. Azanza garckeana fruit tree: Phytochemistry, pharmacology, nutritional and primary health care applications as herbal medicine. Res J Med Plants. 2017;11(4):115-23.
[11] Momodu IB, Okungbowa ES, Agoreyo BO, Maliki MM. Gas Chromatography-mass Spectrometry identification of bioactive compounds in methanol and aqueous seed extracts of Azanza garckeana fruits. Niger J Biotechnol. 2022;38(1):25-38.
[12] Eberhardt TL, Li X, Shupe TF, Hse CY. Chinese Tallow tree (Sapium sebiferum) utilization: characterization of extractives and cell wall chemistry. Wood Fibre Sci. 2007; 39:319-24.
[13] Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants extracts. Afr J Complement Altern Med. 2011;8(1):1-10.
[14] Dailey A, Vuong QV. Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric. 2015; 1:1. doi:10.1080/23311932.2015.1115646.
[15] van der Weerd J, Heeren RMA, Boon JJ. Preparation methods and accessories for the infrared spectroscopic analysis of multi-layer paint films. Stud Conserv. 2004;49(3):193-210. doi:10.1179/sic.2004.49.3.193.
[16] Salih AM, Al-Qurainy F, Tarroum M, Shaikhaldein HO, Hashimi A. Screening and estimation of bioactive compounds of Azanza garckeana (Jakjak) fruit using GCMS, UV-Visible Spectroscopy and HPLC Analysis. Separations. 2022;9(7):172.
[17] Chimirri F, Bosco F, Ceccarelli R, Venturello A, Geobaldo F. Succinic acid and its derivatives: Fermentative production using sustainable industrial agro-food by-products and its applications in the food industry. Ital J Food Sci. 2010;22(2):119-25.
[18] Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2012;41(3):1297-322.
[19] Gagliardi A, Cosco D, Udongo BP, Dini L, Viglieto G, Paolino D. Design and characterization of glyceryl monooleate-Nano-structures containing Doxorubicin hydrochloride. Pharmaceuticals. 2020;12(11):1017.
[20] Mertins O, Matthews PD, Angelova A. Advances in the design of pH-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials. 2020;10(5):963. doi:10.3390/nano10050963.
[21] European Food Safety Authority (EFSA). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Flavouring Group Evaluation 24(FGE:24): Pyridine, pyrrole, indole and quinoline derivatives from chemical group 28. EFSA J. 2006;4(7):1-52.
[22] Poyraz S, Dondas HA, Dondas NY, Sanzana JM. Recent insights about pyrrolidine core skeletons in pharmacology. Front Pharmacol. 2023; 14: 1239658. doi:10.3389/fphar.2023.1239658.
[23] Lukowska-Chojnacka E, Kowalkovoska A, Gizinska M, Korankiewiez M, Slaniszewska M. Synthesis of tetrazole derivatives bearing pyrrolidine scaffold and evaluation of their antifungal activity against Candida albicans. Eur J Med Chem. 2019; 164:106-20.
[24] Moni L, Banfi L, Basso A, Carcone L, Rasparini M, Riva R. Ugi and passerini reactions of biocatalytically derived chiral aldehydes: Applications to the synthesis of bicyclic pyrrolidines and of antiviral agent telaprevir. J Org Chem. 2015;80(7):3411-28.
[25] Li Z, Wang X, Lin Y, Wang Y, Wu S, Xia K, et al. Design, synthesis and evaluation of pyrrolidine based CXCR4 antagonists with in vivo anti-tumor metastatic activity. Eur J Med Chem. 2020; 205: 112537.
[26] Hussein F, Khan Z, Jan MS, Ahmad S, Ahmad A, Rashid U, et al. Synthesis in vitro α-glucosidase inhibition, antioxidant, in vivo anti-diabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazole-2,4-dione derivatives. Bioorg Chem. 2019; 91:103128.
[27] Green HS, Wang SC. Cis-vaccenic acid: New maker to detect seed oil adulteration in avocado oil. Food Chem Adv. 2022; 1:100107.
[28] Caballero D, Rios-Reina R, Amigo J. Reference module in food science. In: Anonymous, editor. Encyclopedia of Food and Health. p. 132-8. 2021.
[29] Yogeswari S, Ramalakshmi S, Neelavathy R, Muthumary JY. Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob J Pharmacol. 2012;6(2):65-71.
[30] Dalli AK, Saha G, Chakraborty U. Characteristics of antimicrobial compounds from a common fern, Pteris biaurita. Indian J Exp Biol. 2007; 45:285-90.
[31] Kurek J. Cytotoxic colchicine Alkaloids: From plants to drugs. IntechOpen. 2018. doi:10.5772/intechopen.72622.
[32] Muzaffar A, Brossi A. Partial synthesis and antitubulin activity of minor Colchicum alkaloids: N-Acetyl-deacetyl colchicine and 2-methylspeciosine. J Nat Prod. 1990;53(4):1021-4.
[33] Duke J. Dr. Duke's Phytochemical and Ethnobotanical Databases. United States Department of Agriculture, Agricultural Research Service; 2014.
[34] Tarkwoska D. Plants are capable of synthesizing animal steroid hormones. Molecules. 2019;24(11):2585. doi:10.3390/molecules24142585.
[35] Janeczko A, Oklešťková J, Siwek A, Dziurka M, Pociecha E, Kocurek M, Novak O. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress. J Steroid Biochem Mol Biol. 2013; 138:384-94.
[36] Janeczko A. Estrogens and Androgens in Plants: The last 20 years of studies. Plants. 2021;10(12):2782. doi:10.3390/plants10122782.
[37] Murugan S, Jakka P, Namani S, Mujumdar V, Radhakrishnan G. The neurosteroid pregnenolone promotes degradation of key proteins in the innate immune signaling to suppress inflammation. J Biol Chem. 2019;294(12):4596-607.
[38] Itodo JI, Ayo J, Rekwot I, Aluwong T, Allam L, Ibrahim S. Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in Rabbit bucks. World Rabbit Sci. 2022;30(4):309-26.
[39] Mazumder K, Nabila H, Aktar A, Farahnaky A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and pro-cessed flour of nine cultivars of Australian lupin species: A comprehensive substantiation. Antioxidants. 2020;9(4):282.
[40] Duke J, Bogenschutz MJ. Dr. Duke's phytochemical and ethnobotanical databases. Washington, D.C: USDA Agricultural Research Ser-vice; 1994.
[41] Nataragan P, Singh S, Balamurugan K. Gas chromatography- mass spectrometry (GCMS) analysis of bioactive compounds present in Oecophylla smaragdina. Res J Pharm Technol. 2019;12(6):2736-41.
[42] Hsouna AB, Trigui M, Mansour RB, Jarraya RM, Damak M, Jaoua S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated minced beef meat. Int J Food Microbiol. 2011;146(1):66-72.