References
[1] Baskin, J. M., J. J. Lu, C. C. Baskin, D. Y. Tan, and L. Wang. (2014). Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Persp. Plant Ecol. Evol. Syst., 16: 93-99. DOI: 10.1016/j.ppees.2014.02.004.
[2] Zhang, K., L. Yao, Y. Zhang, and J. Tao. (2019). Achene heteromorphism in Bidenspilosa (Asteraceae): differences in germi-nation and possible adaptive significance. AoB Plants, 11(3): 1-8. DOI: 10.1093/aobpla/plz026.
[3] Becker, W. (1913). Über die KeimungverschiedenartigerFrüchte und Samenbeiderselben Species. Beih. Bot. Centralbl., 29: 49-52.
[4] Harper, J. L., P. H. Lovell, and K. G. Moore. (1970). The Shapes and Sizes of Seeds Annu. Rev. Ecol. Evol. Syst., 1: 327-356. DOI: 10.1146/annurev.es.01.110170.001551.
[5] Imbert, E. (1999). The effects of achene dimorphism on the dispersal in time and space in Crepis sancta (Asteraceae). Can. J. Bot., 77: 508-513. DOI: 10.1139/cjb-77-4-508.
[6] Dakshini, K. M. M. and S. K. Aggarwal. (1974). Intracapitularcypsele dimorphism and dormancy in Bidensbipinnata. Biol. Plant., 16: 469-471. DOI: 10.1007/BF02922239.
[7] Brändel, M. (2004). Dormancy and germination of heteromorphic achenes of Bidensfrondosa. Flora, 199: 228-233. DOI: 10.1078/0367-2530-00150.
[8] Felippe, G. M. (1990). Germinaçao de Bidens gardener Baker, uma planta anual dos cerrados. Hoehnea, 17: 7-11.
[9] Corkidi, L., E. Rincon, and C. Vazquez-Yanes. (1991). Effects of light and temperature on germination of heteromorphic achenes of Bidensodorata (Asteraceae). Can. J. Bot., 69: 574-579. DOI: 10.1139/b91-078.
[10] Forsyth, C. and N. A. C. Brown. (1982). Germination of the dimorphic fruits of Bidenspilosa L. New Phytol., 90: 151-164. DOI: 10.1111/j.1469-8137.1982.tb03248.x.
[11] Rocha, O. J. (1996). The effects of achene heteromorphism on the dispersal capacity of Bidenspilosa L. Int. J. Plant Sci., 157: 316-322. DOI: 10.1086/297351.
[12] National Institute for Environmental Studies. (2020). Available from: https://www.nies.go.jp/biodiversity/invasive/ DB/detail/80460.html [Accessed 21 August 2020].
[13] Holm, L. G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. (1977). The world’s worst weeds: distribution and biology. Honolulu, University Press of Hawaii. ISBN: 0824802950.
[14] Gutterman, Y. (2002). Survival strategies of annual desert plants. Berlin, Springer-Verlag. ISBN: 978-3-540-43172-5.
[15] Gray, D. and T. H. Thomas. (1982). Seed germination and seedling emergence as influenced by the position of development of the seed on, and chemical applications to, the parent plant. In: The physiology and biochemistry of seed development, dormancy and germination, Khan, A.A., (Ed.). New York, Elsevier. pp: 81-110. ISBN: 0444804234.
[16] Gutterman, Y. (1981). Annual rhythm and position effect in the germinability of Mesembryanthemum nodiflorum. Israel J. Bot., 29: 93-97. DOI: 10.1080/0021213X.1980.10676879.
[17] Salisbury, E. J. (1942). The reproductive capacity of plants. London, G. Bell and Sons.
[18] Yoshioka, T., Y. Yamasue, and K. Ueki. (1985). Seed ecological studies in relation to the asynchronous emergence of Echi-nochloaoryzicolaVasing. 1. Variations in weight and ripening date of seeds among setting positions within one plant. J. Weed Sci. Tech., 30: 58-64. DOI: 10.3719/weed.30.58. (in Japanese)
[19] Esashi, Y., R. Kuraishi, N. Tanaka, and S. Satoh. (1983). Transition from primary dormancy to secondary dormancy in cocklebur seeds. Plant Cell Environ., 6: 493-499. DOI: 10.1111/1365-3040.ep11588130.
[20] Imbert, E. (2002). Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. Evol. Syst., 5: 13-36. DOI: 10.1078/1433-8319-00021.
[21] Olivieri, I. and A. Berger. (1985). Seed dimorphism for dispersal, physiological and demographic aspects. In: Genetic Differen-tiation and Dispersal in Plants, Jacquard, P., G. Heim and J. Antonovics, (Eds.). Berlin, Springer. pp: 413-429. ISBN: 978-3-642-70839-8.
[22] Greene, D. F. and E. A. Johnson. (1989). A model of wind dispersal of winged or plumed seeds. Ecology, 70: 339-347. DOI: 10.2307/1937538.
[23] Baskin, C. C. and Baskin J. M. (1998). Seeds—Ecology, Biogeography and Evolution of Dormancy and Germination. – Acad. Pr., San Diego.
[24] Booth, B. D., S. D. Murphy, and C. J. Swanton. (2003). Weed Ecology in Natural and Agricultural Systems. Wallingford, CABI Publishing. ISBN: 0 85199 528 4.
[25] Hughes, P. W. (2018). Minimal-risk seed heteromorphism: proportions of seed. morphs for optimal risk-averse heteromorphic strategies. Front. Plant Sci., 9: 1412. DOI: 10.3389/fpls.2018.01412.
[26] Froud-Williams, R. J., D. S. H. Drennan, and R. J. Chancellor. (1984). The influence of burial and dry‐storage upon cyclic changes in dormancy, germination and response to light in seeds of various arable weeds. New Phytol., 96: 473-481. DOI: 10.1111/j.1469-8137.1984.tb03581.x.
[27] Fround-Williams, R. J., J. R. Hilton, and J. Dixon. (1986). Evidence for an endogenous cycle of dormancy in dry stored seeds of Poatrivialis L. New Phytol., 102: 123-131. DOI: 10.1111/j.1469-8137.1986.tb00804.x.
[28] Milberg, P. and L. Andersson. (1997). Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Can. J. Bot., 75: 1998-2004. DOI: 10.1139/b97-911.
[29] Dyer, W. E. (1995). Exploiting Weed Seed Dormancy and Germination Requirements through Agronomic Practices. Weed Sci., 43: 498-503. DOI: 10.1017/s0043174500081534.
[30] Esashi, Y., N. Ishihara, R. Kuraishi, and H. Kodama. (1983). Light Actions in the Germination of Cocklebur Seeds: I. Differences in the light responses of the upper and lower seeds. J. Exp. Bot., 34: 903-914. DOI: 10.1093/jxb/34.7.903.
[31] Vegis, A. (1964). Dormancy in higher plants. Annu. Rev. Plant Physiol., 15: 185-224. DOI: 10.1146/annurev.pp. 15.060164.001153.
[32] Japan meteorological agency. (2020). Available from: http://www.jma.go.jp/jma/menu/menureport.html [Accessed 21 August 2020].