Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Food Science and Agriculture /

DOI:http://dx.doi.org/10.26855/ijfsa.2021.03.013

Seasonal Change in the Germination of Heteromorphic Achenes of Bidenspilosa

Date: February 6,2021 |Hits: 422 Download PDF How to cite this paper

Hidehiro Inagaki*, Takehiro Kinoshita

Shizuoka university, Fujieda, Japan.

*Corresponding author: Hidehiro Inagaki

Abstract

Bidens pilosa is a noxious weed species. Its capitulum is heteromorphic achenes divided into central and peripheral achenes. Central achenes are longer, with thorns facing outward from the capitulum, whereas peripheral achenes are shorter, with thorns facing inward. In the present study, we hypothesized that dimorphic achenes of B. pilosa have different seed dispersal strategies, and we compared the difficulty of their detachment and seasonal changes in their germination in order to identify the differences in these strategies. Our results revealed that central achenes were significantly easier to detach than peripheral achenes, suggesting that central achenes may be used for dispersal to farther areas, and peripheral achenes may be used for dispersal to neighboring areas. Furthermore, central achenes showed relatively higher germination rates than peripheral achenes. Only the central achenes showed high germination in dark conditions at 20°C in May. In contrast, peripheral achenes showed high germination in dark conditions at 20°C and 25°C in July. This suggested that central achenes germinated first (in May), and peripheral achenes germinated later in the summer. Our results also indicated that the achenes of B. pilosa showed seasonal changes in photoblastic germination, i.e., both central and peripheral achenes showed light-induced germination in March and dark-induced germination from May to September. Dimorphic achenes and seasonal change in dormancy and photoblastic germination cause asynchronous emergence of plants, making it difficult to control the spreading of B. pilosa.

References

[1] Baskin, J. M., J. J. Lu, C. C. Baskin, D. Y. Tan, and L. Wang. (2014). Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Persp. Plant Ecol. Evol. Syst., 16: 93-99. DOI: 10.1016/j.ppees.2014.02.004.

[2] Zhang, K., L. Yao, Y. Zhang, and J. Tao. (2019). Achene heteromorphism in Bidenspilosa (Asteraceae): differences in germi-nation and possible adaptive significance. AoB Plants, 11(3): 1-8. DOI: 10.1093/aobpla/plz026.

[3] Becker, W. (1913). Über die KeimungverschiedenartigerFrüchte und Samenbeiderselben Species. Beih. Bot. Centralbl., 29: 49-52. 

[4] Harper, J. L., P. H. Lovell, and K. G. Moore. (1970). The Shapes and Sizes of Seeds Annu. Rev. Ecol. Evol. Syst., 1: 327-356. DOI: 10.1146/annurev.es.01.110170.001551.

[5] Imbert, E. (1999). The effects of achene dimorphism on the dispersal in time and space in Crepis sancta (Asteraceae). Can. J. Bot., 77: 508-513. DOI: 10.1139/cjb-77-4-508.

[6] Dakshini, K. M. M. and S. K. Aggarwal. (1974). Intracapitularcypsele dimorphism and dormancy in Bidensbipinnata. Biol. Plant., 16: 469-471. DOI: 10.1007/BF02922239.

[7] Brändel, M. (2004). Dormancy and germination of heteromorphic achenes of Bidensfrondosa. Flora, 199: 228-233. DOI: 10.1078/0367-2530-00150.

[8] Felippe, G. M. (1990). Germinaçao de Bidens gardener Baker, uma planta anual dos cerrados. Hoehnea, 17: 7-11. 

[9] Corkidi, L., E. Rincon, and C. Vazquez-Yanes. (1991). Effects of light and temperature on germination of heteromorphic achenes of Bidensodorata (Asteraceae). Can. J. Bot., 69: 574-579. DOI: 10.1139/b91-078.

[10] Forsyth, C. and N. A. C. Brown. (1982). Germination of the dimorphic fruits of Bidenspilosa L. New Phytol., 90: 151-164. DOI: 10.1111/j.1469-8137.1982.tb03248.x.

[11] Rocha, O. J. (1996). The effects of achene heteromorphism on the dispersal capacity of Bidenspilosa L. Int. J. Plant Sci., 157: 316-322. DOI: 10.1086/297351.

[12] National Institute for Environmental Studies. (2020). Available from: https://www.nies.go.jp/biodiversity/invasive/ DB/detail/80460.html [Accessed 21 August 2020].

[13] Holm, L. G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. (1977). The world’s worst weeds: distribution and biology. Honolulu, University Press of Hawaii. ISBN: 0824802950.

[14] Gutterman, Y. (2002). Survival strategies of annual desert plants. Berlin, Springer-Verlag. ISBN: 978-3-540-43172-5.

[15] Gray, D. and T. H. Thomas. (1982). Seed germination and seedling emergence as influenced by the position of development of the seed on, and chemical applications to, the parent plant. In: The physiology and biochemistry of seed development, dormancy and germination, Khan, A.A., (Ed.). New York, Elsevier. pp: 81-110. ISBN: 0444804234.

[16] Gutterman, Y. (1981). Annual rhythm and position effect in the germinability of Mesembryanthemum nodiflorum. Israel J. Bot., 29: 93-97. DOI: 10.1080/0021213X.1980.10676879.

[17] Salisbury, E. J. (1942). The reproductive capacity of plants. London, G. Bell and Sons.

[18] Yoshioka, T., Y. Yamasue, and K. Ueki. (1985). Seed ecological studies in relation to the asynchronous emergence of Echi-nochloaoryzicolaVasing. 1. Variations in weight and ripening date of seeds among setting positions within one plant. J. Weed Sci. Tech., 30: 58-64. DOI: 10.3719/weed.30.58. (in Japanese)

[19] Esashi, Y., R. Kuraishi, N. Tanaka, and S. Satoh. (1983). Transition from primary dormancy to secondary dormancy in cocklebur seeds. Plant Cell Environ., 6: 493-499. DOI: 10.1111/1365-3040.ep11588130.

[20] Imbert, E. (2002). Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. Evol. Syst., 5: 13-36. DOI: 10.1078/1433-8319-00021.

[21] Olivieri, I. and A. Berger. (1985). Seed dimorphism for dispersal, physiological and demographic aspects. In: Genetic Differen-tiation and Dispersal in Plants, Jacquard, P., G. Heim and J. Antonovics, (Eds.). Berlin, Springer. pp: 413-429. ISBN: 978-3-642-70839-8.

[22] Greene, D. F. and E. A. Johnson. (1989). A model of wind dispersal of winged or plumed seeds. Ecology, 70: 339-347. DOI: 10.2307/1937538.

[23] Baskin, C. C. and Baskin J. M. (1998). Seeds—Ecology, Biogeography and Evolution of Dormancy and Germination. – Acad. Pr., San Diego.

[24] Booth, B. D., S. D. Murphy, and C. J. Swanton. (2003). Weed Ecology in Natural and Agricultural Systems. Wallingford, CABI Publishing. ISBN: 0 85199 528 4.

[25] Hughes, P. W. (2018). Minimal-risk seed heteromorphism: proportions of seed. morphs for optimal risk-averse heteromorphic strategies. Front. Plant Sci., 9: 1412. DOI: 10.3389/fpls.2018.01412.

[26] Froud-Williams, R. J., D. S. H. Drennan, and R. J. Chancellor. (1984). The influence of burial and dry‐storage upon cyclic changes in dormancy, germination and response to light in seeds of various arable weeds. New Phytol., 96: 473-481. DOI: 10.1111/j.1469-8137.1984.tb03581.x.

[27] Fround-Williams, R. J., J. R. Hilton, and J. Dixon. (1986). Evidence for an endogenous cycle of dormancy in dry stored seeds of Poatrivialis L. New Phytol., 102: 123-131. DOI: 10.1111/j.1469-8137.1986.tb00804.x.

[28] Milberg, P. and L. Andersson. (1997). Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Can. J. Bot., 75: 1998-2004. DOI: 10.1139/b97-911.

[29] Dyer, W. E. (1995). Exploiting Weed Seed Dormancy and Germination Requirements through Agronomic Practices. Weed Sci., 43: 498-503. DOI: 10.1017/s0043174500081534.

[30] Esashi, Y., N. Ishihara, R. Kuraishi, and H. Kodama. (1983). Light Actions in the Germination of Cocklebur Seeds: I. Differences in the light responses of the upper and lower seeds. J. Exp. Bot., 34: 903-914. DOI: 10.1093/jxb/34.7.903.

[31] Vegis, A. (1964). Dormancy in higher plants. Annu. Rev. Plant Physiol., 15: 185-224. DOI: 10.1146/annurev.pp. 15.060164.001153.

[32] Japan meteorological agency. (2020). Available from: http://www.jma.go.jp/jma/menu/menureport.html [Accessed 21 August 2020].

How to cite this paper

Seasonal Change in the Germination of Heteromorphic Achenes of Bidenspilosa

How to cite this paper: Hidehiro Inagaki, Takehiro Kinoshita. (2021) Seasonal Change in the Germination of Heteromorphic Achenes of BidenspilosaInternational Journal of the Science of Food and Agriculture5(1), 91-96.

DOI: http://dx.doi.org/10.26855/ijfsa.2021.03.013

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.