References
[1] Akerlof GA. The market for “lemons”: Quality uncertainty and the market mechanism. In: Uncertainty in economics. Elsevier; 1978:235-51.
[2] Jaschke S, Küchler U. Coherent risk measures and good-deal bounds. Finance Stochast. 2001;5:181-200.
[3] Kallsen J. Derivative pricing based on local utility maximization. Finance Stochast. 2002;6:115-40.
[4] Foldes L. Valuation and martingale properties of shadow prices: An exposition. J Econ Dyn Control. 2000;24(11-12):1641-701.
[5] Zhang L, Mykland PA, Aït-Sahalia Y. A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J Am Stat Assoc. 2005;100(472):1394-411.
[6] Ellsberg D. Risk, ambiguity, and the savage axioms. Q J Econ. 1961;75(4):643-69.
[7] Walley P. Statistical reasoning with imprecise probabilities. Q J Econ. 1991.
[8] Schweizer M. Option hedging for semimartingales. Stoch Process Appl. 1991;37(2):339-63.
[9] Poulsen R, Schenk-Hoppè KR, Ewald CO. Risk minimization in stochastic volatility models: Model risk and empirical performance. Quant Finance. 2009;9(6):693-704.
[10] El Karoui N, Peng S, Quenez MC. Backward stochastic differential equations in finance. Math Finance. 1997;7(1):1-71.
[11] Frey RR. Derivative asset analysis in models with level-dependent and stochastic volatility. CWI Q. 1997;10(1):1.
[12] Hansen LP. Nobel lecture: Uncertainty outside and inside economic models. J Polit Econ. 2014;122(5):945-87.
[13] Hansen LP, Sargent TJ. Robustness. Princeton University Press; 2008.
[14] Lyons TJ. Uncertain volatility and the risk-free synthesis of derivatives. Appl Math Finance. 1995;2(2):117-33.
[15] Avellaneda M, Levy A, Parás A. Pricing and hedging derivative securities in markets with uncertain volatilities. Appl Math Finance. 1995;2(2):73-88.
[16] Peng S. Nonlinear expectations and stochastic calculus under uncertainty. arXiv preprint arXiv:1002.4546. 2010.
[17] Denis L, Martini C. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. arXiv preprint arXiv:1002.4546. 2006.
[18] Chen JM. On exactitude in financial regulation: Value-at-risk, expected shortfall, and expectiles. Risks. 2018;6(2):61.
[19] Jorion P. Value at risk: The new benchmark for managing financial risk. McGraw-Hill; 2007.
[20] Chib S, Zeng X. Which factors are risk factors in asset pricing? A model scan framework. J Bus Econ Stat. 2020;38(4):771-83.
[21] Basel Committee on Banking Supervision. Principles for sound liquidity risk management and supervision. Bank for International Settlements; 2011.
[22] Blaschke W, Jones MT, Majnoni G, et al. Stress testing of financial systems: An overview of issues, methodologies, and experiences. IMF Working Paper. 2001.
[23] Duffie D, Kan R. A yield-factor model of interest rates. Math Finance. 1996;6(4):379-406.
[24] Piazzesi M. Affine term structure models. In: Handbook of financial econometrics: Tools and techniques. Elsevier; 2010:691-766.
[25] Diebold FX, Li C. Forecasting the term structure of government bond yields. J Econom. 2006;130(2):337-64.
[26] Diebold FX, Rudebusch GD. Yield curve modeling and forecasting: The dynamic Nelson-Siegel approach. Princeton University Press; 2013.
[27] Federal Register. Rules and regulations federal register. 2020;27(50):29-57.
[28] Basel Committee on Banking Supervision. Revisions to the Basel II market risk framework. Bank for International Settlements; 2009.
[29] Huang G, Zhou X, Song Q. Dynamic optimization of portfolio allocation using deep reinforcement learning. arXiv preprint arXiv:2412.18563. 2024.
[30] Biagini S, Bouchard B, Kardaras C, Nutz M. Robust fundamental theorem for continuous processes. Math Finance. 2017;27(4):963-87.
[31] Bayraktar E, Yao S. On the robust optimal stopping problem. SIAM J Control Optim. 2014;52(5):3135-75.
[32] Bayraktar E, Zhang Y. Minimizing the probability of lifetime ruin under ambiguity aversion. SIAM J Control Optim. 2015;53(1):58-90.
[33] Föllmer H, Schweizer M. Hedging of contingent claims under incomplete information. Appl Stoch Anal. 1991;5:389-414.
[34] Mercurio F. Claim pricing and hedging under market incompleteness and “mean-variance” preferences. Eur J Oper Res. 2001;133(3):635-52.
[35] Schoutens W, Simons E, Tistaert J. A perfect calibration! Now what? The best of Wilmott. 2003:281.
[36] Guillaume F, Schoutens W. Calibration risk: Illustrating the impact of calibration risk under the Heston model. Rev Deriv Res. 2012;15:57-79.
[37] Cont R. Model uncertainty and its impact on the pricing of derivative instruments. Math Finance. 2006;16(3):519-47.
[38] Bannör KF, Scherer M. Capturing parameter risk with convex risk measures. Eur Actuar J. 2013;3:97-132.
[39] Gupta A, Reisinger C. Robust calibration of financial models using Bayesian estimators. J Comput Finance. 2014;17:3-36.
[40] Glasserman P, Xu X. Robust risk measurement and model risk. Quant Finance. 2014;14(1):29-58.
[41] Glasserman P. Monte Carlo methods in financial engineering. Springer; 2004.
[42] Sun X. Quantifying model uncertainty in financial markets [dissertation]. Ghent University; 2016.
[43] Sun X, Vanmaele M. Uncertainty quantification of derivative instruments. East Asian J Appl Math. 2017;7(2):343-62.
[44] Senova A, Tobisova A, Rozenberg R. New approaches to project risk assessment utilizing the Monte Carlo method. Sustainability. 2023;15(2):1006.
[45] Föllmer H, Sondermann D. Hedging of non-redundant contingent claims. Sonderforschungsbereich 303. 1985.
[46] Schweizer M. Hedging of options in a general semimartingale model [dissertation]. ETH Zurich; 1988.
[47] Nocco BW, Stulz RM. Enterprise risk management: Theory and practice. J Appl Corp Finance. 2022;34(1):81-94.
[48] Møller T. Risk-minimizing hedging strategies for unit-linked life insurance contracts. ASTIN Bull. 1998;28(1):17-47.
[49] Colwell D, El-Hassan N, Kwon OK. Hedging diffusion processes by local risk minimization with applications to index tracking. J Econ Dyn Control. 2007;31(7):2135-51.
[50] Pansera J. Discrete-time local risk minimization of payment processes and applications to equity-linked life-insurance contracts. Insur Math Econ. 2012;50(1):1-11.
[51] Henriksen LFB, Møller T. Local risk-minimization with longevity bonds. Appl Stoch Models Bus Ind. 2015;31(2):241-63.
[52] Biagini F, Cretarola A. Local risk minimization for defaultable markets. Math Finance. 2009;19(4):669-89.
[53] Okhrati R, Balbás A, Garrido J. Hedging of defaultable claims in a structural model using a locally risk-minimizing approach. Stoch Process Appl. 2014;124(9):2868-91.
[54] Matic J. Hedging strategies under jump-induced market incompleteness [dissertation]. Humboldt-Universität zu Berlin; 2019.
[55] Härdle WK, Harvey CR, Reule RC. Understanding cryptocurrencies. 2020.
[56] Grathwohl W, Chen RT, Bettencourt J, et al. Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367. 2018.
[57] Rahaman SU, Abdul MJ. Quantifying uncertainty in economics policy predictions: A Bayesian & Monte Carlo based data-driven approach. Int Rev Financ Anal. 2025;102:104157.
[58] Adeloye FC, Olawoyin O, Daniel C. Economic policy uncertainty and financial markets in the United State. Int J Res Innov Soc Sci. 2024;8(6):998-1016.
[59] Wang W, Jin Z, Qian L, Su X. Local risk minimization for vulnerable European contingent claims on nontradable assets under regime switching models. Stoch Anal Appl. 2016;34(4):662-78.
[60] Choulli T, Vandaele N, Vanmaele M. The Föllmer-Schweizer decomposition: Comparison and description. Stoch Process Appl. 2010;120(6):853-72.