magazinelogo

Engineering Advances

ISSN Online: 2768-7961 Downloads: 110843 Total View: 825339
Frequency: quarterly CODEN: EANDDL
Email: ea@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ea.2025.04.008

Analysis of Computer-synthesized Cross-linked Polymers Using the ReaxFF Force Field

Andrii Voronkin1,*, Anastasiia Dunaieva1, Dmytro Mishurov1,2

1National Technical University “Kharkiv Polytechnic Institute”, Kharkiv 61002, Ukraine.

2Institute of Chemistry, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine.

*Corresponding author: Andrii Voronkin

Published: May 15,2025

Abstract

The purpose of this study is to analyze the results of computer-synthesized cross-linked polymers using the ReaxFF force field. Monomers from glycidyl derivatives of 3,5,7,3’4’-pentahydroxyflavone (quercetin) cured with diethylenetriamine (DETA) were used for polymer synthesis. The ReaxFF method was chosen for its effectiveness in simulating chemical reactions and molecular dynamics in complex systems. It is known for its ability to capture intricate reaction mechanisms. The study found that the choice of geometry optimization method had a significant impact on polymer densities. The FIRE method yielded the best results. Calculated values for the densities and glass transition temperatures (Tg) of the resulting polymers showed good correlation with experimental data, indicating the method's reliability in predicting certain physical properties. The investigation highlights the importance of accurately interpreting the chemical structure of cross-linked polymers in computer simulations to predict their properties.

References

[1] Dehkordi NK, Shojaei S, Asefnejad A, Hassani K, Benisi SZ. The effect of three types of cross-linked hydrogels and volume fraction of polyacrylamide on the swelling and thermal behavior using molecular dynamics simulation. J Mater Res Technol. 2023;24:4627-38. https://doi.org/10.1016/j.jmrt.2023.04.102

[2] Sun WF, Chern WK, Chan JC, Chen Z. Development of high-performance thermoplastic elastomers using multiblock copolymers. Polymers. 2023;15(3):765.
https://doi.org/10.3390/polym15030765

[3] Gartner TE, Jayaraman A. Modeling and simulations of polymers: A multiscale approach from the atomistic to the continuum scale. Macromolecules. 2019;52(3):755-86. https://doi.org/10.1021/acs.macromol.8b01836

[4] Aluko O, Gotham S, Odegard GM. Analysis of mechanical properties in polymer composites using computational models. J Mech Eng Autom. 2015;5(12).
https://doi.org/10.17265/2159-5275/2015.12.002

[5] Kowalik M, Ashraf C, Damirchi B, Akbarian D, Rajabpour S, van Duin AC. Atomistic scale analysis of the carbonization process for C/H/O/N-based polymers with the REAXFF reactive force field. J Phys Chem B. 2019;123(25):5357-67.

https://doi.org/10.1021/acs.jpcb.9b04298

[6] Damirchi B, Radue M, Kanhaiya K, Heinz H, Odegard GM, van Duin AC. ReaxFF reactive force field study of polymerization of a polymer matrix in a carbon nanotube-composite system. J Phys Chem C. 2020;124(37):20488-97.

https://doi.org/10.1021/acs.jpcc.0c03509

[7] Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM. Molecular dynamics simulations of carbon nanotube-polymer composites. Polymer. 2011;52(11):2445-52.
https://doi.org/10.1016/j.polymer.2011.03.052

[8] Jeyranpour F, Alahyarizadeh G, Arab B. Simulation of the mechanical properties of carbon nanotube reinforced polymer composites. J Mol Graph Model. 2015;62:157-64.
https://doi.org/10.1016/j.jmgm.2015.09.012

[9] Schichtel JJ, Chattopadhyay A. Computational analysis of the thermal properties of polymer composites. Comput Mater Sci. 2020;174:109469.
https://doi.org/10.1016/j.commatsci.2019.109469

[10] Patil SU, Shah SP, Olaya M, Deshpande PP, Maiaru M, Odegard GM. Analysis of polymer matrix composites using computational models. ACS Appl Polym Mater. 2021;3(11):5788-97. https://doi.org/10.1021/acsapm.1c01024

[11] Varshney V, Patnaik SS, Roy AK, Farmer BL. Molecular dynamics simulations of polymer-nanotube composites. Macromolecules. 2008;41(18):6837-42.
https://doi.org/10.1021/ma801153e

[12] Mishurov D, Voronkin A, Nedilko O, Zykina I. The influence of different factors on exploitation properties of nonlinear optical polymeric materials based on an epoxy matrix doped with flavonoids. Polym Test. 2020;87:106535.

https://doi.org/10.1016/j.polymertesting.2020.106535

[13] Mishurov DA, Voronkin AA, Roshal AD. Structural and thermal properties of polymer composites. Struct Chem. 2015;27(1):285-94. https://doi.org/10.1007/s11224-015-0694-5

[14] Mishurov D, Voronkin A, Roshal A, Brovko O. Optical properties of polymer nanocomposites. Opt Mater. 2016;57:179-84. https://doi.org/10.1016/j.optmat.2016.03.047

[15] Vashisth A, Ashraf C, Bakis CE, van Duin ACT. Mechanical behavior of carbon nanotube composites studied via ReaxFF molecular dynamics simulations. Polymer. 2018;158:354-63. https://doi.org/10.1016/j.polymer.2018.11.005

[16] Vashisth A, Ashraf C, Zhang W, Bakis CE, van Duin AC. ReaxFF molecular dynamics simulations of interfacial shear strength in carbon nanotube composites. J Phys Chem A. 2018;122(32):6633-42. https://doi.org/10.1021/acs.jpca.8b03826

[17] Nayir N, Mao Q, Wang T, Kowalik M, Zhang Y, Wang M, et al. Computational study of the mechanical properties of 2D materials using ReaxFF. 2D Mater. 2023;10(3):032002.
https://doi.org/10.1088/2053-1583/acd7fd

[18] Nayir N, Wang Y, Shabnam S, Hickey DR, Miao L, Zhang X, et al. ReaxFF molecular dynamics simulations of the thermal properties of polymer composites. J Phys Chem C. 2020;124(51):28285-97. https://doi.org/10.1021/acs.jpcc.0c09155

[19] Larentzos JP, Rice BM, Byrd EF, Weingarten NS, Lill JV. Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES). Part 1: ReaxFF models for cyclotrimethylene trinitramine (RDX) and 1,1-diamino-2,2-dinitroethene (FOX-7). J Chem Theory Comput. 2015;11(2):381-91. https://doi.org/10.1021/ct500788c

[20] Han Y, Jiang D, Zhang J, Li W, Gan Z, Gu J. Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Front Chem Sci Eng. 2015;10(1):16-38. https://doi.org/10.1007/s11705-015-1545-z

[21] Kallivokas SV, Sgouros AP, Theodorou DN. Molecular simulations of polymer-based nanocomposites using ReaxFF. Soft Matter. 2019;15(4):721-33.
https://doi.org/10.1039/c8sm02071j

[22] Zhang HR, Zhang XX, Fu X, Liu J, Qi X, Yan QL. Decomposition mechanisms of insensitive 2D energetic polymer TAGP using ReaxFF molecular dynamics simulation combined with Pyro-GC/MS experiments. J Anal Appl Pyrolysis. 2022;162:105453.
https://doi.org/10.1016/j.jaap.2022.105453

[23] Liu J, Li X, Guo L, Zheng M, Han J, Yuan X, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. J Mol Graph Model. 2014;53:13-22.
https://doi.org/10.1016/j.jmgm.2014.07.002

[24] Kaymak MC, Rahnamoun A, O'Hearn KA, van Duin AC, Merz KM, Aktulga HM. Development of a ReaxFF reactive force field for the simulation of biomolecular reactions. J Chem Theory Comput. 2022;18(9):5181-94.

How to cite this paper

Analysis of Computer-synthesized Cross-linked Polymers Using the ReaxFF Force Field

How to cite this paper: Andrii Voronkin, Anastasiia Dunaieva, Dmytro Mishurov. (2025). Analysis of Computer-synthesized Cross-linked Polymers Using the ReaxFF Force FieldEngineering Advances5(2), 89-95.

DOI: http://dx.doi.org/10.26855/ea.2025.04.008