magazinelogo

International Journal of Food Science and Agriculture

ISSN Online: 2578-3475 Downloads: 235086 Total View: 3106602
Frequency: quarterly ISSN Print: 2578-3467 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijfsa.2025.03.003

Exploring Genetic Resistance to Mastitis in Dairy Cattle: Key Genes and Their Impact on Productivity and Reproductive Traits

Mahendra Pal1,*, Asledin Abdulhaziz2, Tesfaye Rebuma3, Tamasgen Ragasa4

1Narayan Consultancy of Veterinary Public Health, and Microbiology, Bharuch 388001, Gujarat, India.

2Department of Clinical Studies, School of Veterinary Medicine, Wallaga University, Nekemte, PO-395, Oromia, Ethiopia.

3Shaggar City Administration Sebeta Sub-City Agricultural Office, Sebeta, Oromia, Ethiopia.

4Wayu Tuka District Agricultural Office, East Wallaga Zone, Nekemte, Oromia, Ethiopia.

*Corresponding author: Mahendra Pal

Published: March 25,2025

Abstract

Mastitis poses a significant challenge in dairy farming, leading to considerable economic losses due to diminished milk production and increased veterinary costs. This review examines the genetic factors contributing to mastitis resistance in dairy cattle, focusing on key genes such as lactoferrin (LTF), bovine leukocyte antigen (BoLA), and β-lactoglobulin (BLG). These genes are instrumental in enhancing immune responses, regulating inflammation, and exhibiting antimicrobial properties, thereby mitigating the risk of mastitis. Studies indicate that specific genetic variants associated with LTF and BLG not only reduce susceptibility to mastitis but also improve productive and reproductive traits, including milk yield, composition, and fertility. The integration of these resistance genes into breeding programs presents a promising approach to enhancing herd health, optimizing milk production efficiency, and ensuring sustainable dairy farming practices. This review underscores the critical interplay between genetic resistance traits and overall dairy cattle productivity, advocating for future research to explore non-coding RNAs and gene-environment interactions that may further improve mastitis resistance strategies.

References

[1] Smith JA, Brown LR. Genetic improvement of mastitis resistance traits: implications for dairy production. J Dairy Res. 2021;88(1):45-54.

[2] Johnson PJ, Lee SK. The role of genomic selection in dairy cattle breeding: impacts on milk yield and health. Anim Genet. 2023;54(2):234-248.

[3] Garcia MF, Edwards R, Thompson J. Non-coding RNAs as potential biomarkers for mastitis resistance in dairy cattle. BMC Genomics. 2024;25(1):112-125.

[4] Bhardwaj D, Gupta RK, Kumar A. A comprehensive review of mastitis in dairy animals: Management and control strategies. Vet Res Commun. 2022;46(6):45-58.

[5] Ranjan A, Singh A. Recent advances in understanding the immune response to mastitis in dairy cows. Vet Res. 2020;51(1):1-13.

[6] Sahana G, Guldbrandtsen B, Thomsen B, Holm LE, Lund MS. Genome-wide association study using high-density SNP arrays for clinical mastitis traits in dairy cattle. J Dairy Sci. 2021;104(5):6334-6346.

[7] Sender G, Korwin-Kossakowska A, Pawlik A, Hameed KGA, Oprządek J. Genetic basis of mastitis resistance in dairy cattle a review. Ann Anim Sci. 2020;20(4):663-673.

[8] Detilleux JC, Koehler KJ, Freeman AE. Immunological parameters of dairy cattle: genetic variation and implications for mastitis resistance. J Dairy Sci. 2023;106(7):8230-8245.

[9] Pal M. Etiology, transmission, epidemiology, clinical spectrum, diagnosis and management of fungal mastitis in dairy animals: A mini review. Int J Food Sci Agric. 2023;7(3):424-429.

[10] Tao X, Zhang K, Zhang J, Liu Z. Transmission dynamics of Staphylococcus aureus in dairy cattle: Implications for mastitis control. BMC Vet Res. 2022;18(1):51-58.

[11] Wang Y, Zhao M, Li H, Lu Z. Role of Corynebacterium bovis in bovine mastitis: A review of bacterial pathogenesis and management strategies. Vet Microbiol. 2023;280:109-117.

[12] Ashrafi M, Talaei S, Mohammadi G. Environmental factors affecting the incidence of bovine mastitis caused by E. coli and other environmental pathogens. J Dairy Sci. 2024;107(2):733-745.

[13] Salem M, Upadhyay KK, Ghosh M. Mastitis in dairy cattle: Insights into its multifactorial etiology and effective management strategies. Anim Biotechnol. 2023;34(1):16-28.

[14] Sharma P, Vaidya K, Kaur P. The role of Staphylococcus aureus in bovine mastitis: Epidemiology and management strategies. Vet J. 2023;272:105730.

[15] Parker M, Javed MT, Huda R. Chronic mastitis in dairy cows: The implications of Staphylococcus aureus. J Dairy Res. 2022;89(3):387-396.

[16] Oliveira ST, Saldanha M, Pereira D. Impact of Streptococcus agalactiae infections on dairy herd health: A review. BMC Vet Res. 2022;18(1):45-53.

[17] Brahmana G, Yasuda K, Hirai S. Environmental factors influencing Escherichia coli-associated mastitis in dairy cows. Animals. 2023;13(1):1-10.

[18] Abdullah AS, Sultana R, Hasan MU. The increasing prevalence of environmental mastitis pathogens: Insights from recent studies. J Anim Health Res. 2023;20(2):250-260.

[19] Ellis RJ, Strachan B, Bassett H. Klebsiella species in mastitis: Epidemiology and risk factors for bovine mastitis. Vet Microbiol. 2024;283:109096.

[20] Zhang Q, Ji X, Li C. Overview of the major pathogens causing bovine mastitis and their economic impacts. Front Vet Sci. 2023;10:107512.

[21] Almeida RS, Silva MER, Franco MM. The role of minor pathogens in mastitis: Insights into Corynebacterium bovis and its implications. Microbiol Spectr. 2023;11(1):e00153-23.

[22] Brun ML, Pagliarini C, Lima JA. Coagulase-negative staphylococci and their role in bovine mastitis: Characterization and management strategies. J Dairy Sci. 2024;107(2):184-192.

[23] Griffiths MW, Cook N, Boulton K. Bacillus cereus in milk: Implications for dairy microbiology and mastitis. Dairy Sci Technol. 2023;103(1):55-67.

[24] Zhao Y, Phillips N, Ge W. Impact of minor pathogens on herd health and milk quality: Strategies for control in dairy herds. J Anim Sci. 2023;101(4):055.

[25] Sender G, Korwin-Kossakowska A, Pawlik A, Hameed KGA, Oprządek J. Genetic basis of mastitis resistance in dairy cattle a review. Ann Anim Sci. 2021;21(3):561-583.

[26] Kawai K, Shimazaki KI. Advances in lactoferrin research concerning bovine mastitis. Biochem Cell Biol. 2022;100:69-75.

[27] Rupp R, Hernandez A, Mallard B. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. J Dairy Sci. 2023;106(4):3121-3134.

[28] Pal M, Regasa A, Gizaw F. Etiology, pathogenesis, risk factors, diagnosis and management of bovine mastitis: A comprehensive review. Int J Anim Vet Sci. 2019;6:40-55.

[29] Owens WE, Ray CH, Yancey RJ. Comparison of success of antibiotic therapy during lactation and results of antimicrobial susceptibility tests for bovine mastitis. J Dairy Sci. 2022;105(3):2292-2300.

[30] Detilleux JC, Koehler KJ, Freeman AE, Kehrli ME Jr, Kelley DH. Immunological parameters of periparturient Holstein cattle: genetic variation. J Dairy Sci. 2022;105(1):213-226.

[31] Stear MJ, Bishop SC, Mallard BA, Raadsma H. The sustainability, feasibility and desirability of breeding livestock for disease resistance. Res Vet Sci. 2023;133:1-7.

[32] Hagstad UM, Hubbert WT. Food Quality Control of Foods of Animal Origin. IWA State University Press, USA; 2022.

How to cite this paper

Exploring Genetic Resistance to Mastitis in Dairy Cattle: Key Genes and Their Impact on Productivity and Reproductive Traits

How to cite this paper: Mahendra Pal, Asledin Abdulhaziz, Tesfaye Rebuma, Tamasgen Ragasa. (2025) Exploring Genetic Resistance to Mastitis in Dairy Cattle: Key Genes and Their Impact on Productivity and Reproductive TraitsInternational Journal of Food Science and Agriculture9(1), 26-30.

DOI: http://dx.doi.org/10.26855/ijfsa.2025.03.003