Mahendra Pal1,*, Asledin Abdulhaziz2, Tesfaye Rebuma3, Tamasgen Ragasa4
1Narayan Consultancy of Veterinary Public Health, and Microbiology, Bharuch 388001, Gujarat, India.
2Department of Clinical Studies, School of Veterinary Medicine, Wallaga University, Nekemte, PO-395, Oromia, Ethiopia.
3Shaggar City Administration Sebeta Sub-City Agricultural Office, Sebeta, Oromia, Ethiopia.
4Wayu Tuka District Agricultural Office, East Wallaga Zone, Nekemte, Oromia, Ethiopia.
*Corresponding author: Mahendra Pal
References
[1] Smith JA, Brown LR. Genetic improvement of mastitis resistance traits: implications for dairy production. J Dairy Res. 2021;88(1):45-54.
[2] Johnson PJ, Lee SK. The role of genomic selection in dairy cattle breeding: impacts on milk yield and health. Anim Genet. 2023;54(2):234-248.
[3] Garcia MF, Edwards R, Thompson J. Non-coding RNAs as potential biomarkers for mastitis resistance in dairy cattle. BMC Genomics. 2024;25(1):112-125.
[4] Bhardwaj D, Gupta RK, Kumar A. A comprehensive review of mastitis in dairy animals: Management and control strategies. Vet Res Commun. 2022;46(6):45-58.
[5] Ranjan A, Singh A. Recent advances in understanding the immune response to mastitis in dairy cows. Vet Res. 2020;51(1):1-13.
[6] Sahana G, Guldbrandtsen B, Thomsen B, Holm LE, Lund MS. Genome-wide association study using high-density SNP arrays for clinical mastitis traits in dairy cattle. J Dairy Sci. 2021;104(5):6334-6346.
[7] Sender G, Korwin-Kossakowska A, Pawlik A, Hameed KGA, Oprządek J. Genetic basis of mastitis resistance in dairy cattle a review. Ann Anim Sci. 2020;20(4):663-673.
[8] Detilleux JC, Koehler KJ, Freeman AE. Immunological parameters of dairy cattle: genetic variation and implications for mastitis resistance. J Dairy Sci. 2023;106(7):8230-8245.
[9] Pal M. Etiology, transmission, epidemiology, clinical spectrum, diagnosis and management of fungal mastitis in dairy animals: A mini review. Int J Food Sci Agric. 2023;7(3):424-429.
[10] Tao X, Zhang K, Zhang J, Liu Z. Transmission dynamics of Staphylococcus aureus in dairy cattle: Implications for mastitis control. BMC Vet Res. 2022;18(1):51-58.
[11] Wang Y, Zhao M, Li H, Lu Z. Role of Corynebacterium bovis in bovine mastitis: A review of bacterial pathogenesis and management strategies. Vet Microbiol. 2023;280:109-117.
[12] Ashrafi M, Talaei S, Mohammadi G. Environmental factors affecting the incidence of bovine mastitis caused by E. coli and other environmental pathogens. J Dairy Sci. 2024;107(2):733-745.
[13] Salem M, Upadhyay KK, Ghosh M. Mastitis in dairy cattle: Insights into its multifactorial etiology and effective management strategies. Anim Biotechnol. 2023;34(1):16-28.
[14] Sharma P, Vaidya K, Kaur P. The role of Staphylococcus aureus in bovine mastitis: Epidemiology and management strategies. Vet J. 2023;272:105730.
[15] Parker M, Javed MT, Huda R. Chronic mastitis in dairy cows: The implications of Staphylococcus aureus. J Dairy Res. 2022;89(3):387-396.
[16] Oliveira ST, Saldanha M, Pereira D. Impact of Streptococcus agalactiae infections on dairy herd health: A review. BMC Vet Res. 2022;18(1):45-53.
[17] Brahmana G, Yasuda K, Hirai S. Environmental factors influencing Escherichia coli-associated mastitis in dairy cows. Animals. 2023;13(1):1-10.
[18] Abdullah AS, Sultana R, Hasan MU. The increasing prevalence of environmental mastitis pathogens: Insights from recent studies. J Anim Health Res. 2023;20(2):250-260.
[19] Ellis RJ, Strachan B, Bassett H. Klebsiella species in mastitis: Epidemiology and risk factors for bovine mastitis. Vet Microbiol. 2024;283:109096.
[20] Zhang Q, Ji X, Li C. Overview of the major pathogens causing bovine mastitis and their economic impacts. Front Vet Sci. 2023;10:107512.
[21] Almeida RS, Silva MER, Franco MM. The role of minor pathogens in mastitis: Insights into Corynebacterium bovis and its implications. Microbiol Spectr. 2023;11(1):e00153-23.
[22] Brun ML, Pagliarini C, Lima JA. Coagulase-negative staphylococci and their role in bovine mastitis: Characterization and management strategies. J Dairy Sci. 2024;107(2):184-192.
[23] Griffiths MW, Cook N, Boulton K. Bacillus cereus in milk: Implications for dairy microbiology and mastitis. Dairy Sci Technol. 2023;103(1):55-67.
[24] Zhao Y, Phillips N, Ge W. Impact of minor pathogens on herd health and milk quality: Strategies for control in dairy herds. J Anim Sci. 2023;101(4):055.
[25] Sender G, Korwin-Kossakowska A, Pawlik A, Hameed KGA, Oprządek J. Genetic basis of mastitis resistance in dairy cattle a review. Ann Anim Sci. 2021;21(3):561-583.
[26] Kawai K, Shimazaki KI. Advances in lactoferrin research concerning bovine mastitis. Biochem Cell Biol. 2022;100:69-75.
[27] Rupp R, Hernandez A, Mallard B. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. J Dairy Sci. 2023;106(4):3121-3134.
[28] Pal M, Regasa A, Gizaw F. Etiology, pathogenesis, risk factors, diagnosis and management of bovine mastitis: A comprehensive review. Int J Anim Vet Sci. 2019;6:40-55.
[29] Owens WE, Ray CH, Yancey RJ. Comparison of success of antibiotic therapy during lactation and results of antimicrobial susceptibility tests for bovine mastitis. J Dairy Sci. 2022;105(3):2292-2300.
[30] Detilleux JC, Koehler KJ, Freeman AE, Kehrli ME Jr, Kelley DH. Immunological parameters of periparturient Holstein cattle: genetic variation. J Dairy Sci. 2022;105(1):213-226.
[31] Stear MJ, Bishop SC, Mallard BA, Raadsma H. The sustainability, feasibility and desirability of breeding livestock for disease resistance. Res Vet Sci. 2023;133:1-7.
[32] Hagstad UM, Hubbert WT. Food Quality Control of Foods of Animal Origin. IWA State University Press, USA; 2022.