References
[1] Nicolás, A. and Bermúdez, B. (2005). 2D thermal/isothermal incompressible viscous flows, Int. J. Numer. Meth. Fluids, 48, pp. 349-366.
[2] Báez, E. and Nicolás, A. (2006). 2D natural convection flows in tilted cavities: porous media and homogeneous fluids. Int. J. of heat and Mass Transfer, vol. 49, 4773-4785.
[3] Desrayaud, G. and Lauriat, G. (1993). Unsteady confined buoyant plumes. J. Fluid Mechanics, vol. 252, 617-646.
[4] Minev, P. D., van de Vosse, F. N., Timmermans L. J. P., Rindt, C. C. M., van Steenhoven, A. A. (1994). Numerical simulation of buoyant plumes using a spectral element technique. Proceedings of Heat Transfer 94, Advanced Computational Methods in Heat Transfer, (ed. Wrobel, Brebbia and Nowak), Computational Mechanics publica-tions, Southampton, Boston, 147-154.
[5] Basiaans, R. G. M., Rindt, C. C. M., van Steenhoven, A. A. and Nieuwstadt, F. T. M. (1998). Direct and large eddy simulation of the transition of two and three-dimensional plane plumes in a confined enclosure. Int. Journal of Heat and Mass Transfer, 41, 3989-4007.
[6] R. G. Bill Jr. and B. Gebhart. (1975). The transition of plane plumes. Int. J. Heat Mass Transfer, 18, 513-526.
[7] H. Rouse, C. S. Yih, H.W. (1952). Humphreys, Gravitational convection from a boundary source, Tellus 4, 201-210.
[8] R. Peyret and T. D. Taylor. (1983). Computational Methods for Fluid Flow, Springer-Verlag, NY.
[9] Nicolás, A. (1991). A finite element approach to the Kuramoto-Sivashinski equation, Advances in Numerical Me-thods, SIAM.
[10] Manar, S. M., Aljethelah, Ahmed, Al-Sammaraie, Syeda H. Tasnim, Shohel Mahmud, and Anmesh Dutta. (2018). Effect of convection heat transfer on thermal energy storage unit, Open Phys, 16: 861-867.
[11] Ahmed, S. E., Rahman, S. M., San, O., Rasheed, A., Navon, I. M. (n.d.). Memory embedded non-intrusive reduced order modelling of non-ergodic flows. Physics of Fluids, 31(12), art. no. 126602, 201.
[12] Prasopchingchana, U. (2019). Numerical study of natural convection in a rectangular cavity with variation of cavity aspect ratios and cavity inclination angles, IOP Conference Series: Materials Science and Engineering, 576(1), art. no. 012044.
[13] Mamourian, M., Shirvan, K. M., Ellahi, R., Rahimi, A. B. (2016). Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int. J. Heat Mass Transf., 102, 544-554.
[14] Mastiani, M., Kim, M. M., Nematollahi, A. (2017). Density maximum effects on mixed convection in a square lid-driven enclosure filled with Cu-water nanofluids. Adv. Powder Technol., 28, 197-214.
[15] Yu, Q., Xu, H., Liao, S. J. (2018). Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno’s nanofluid model. Int. J. Heat Mass Transf., 126, 221-236.
[16] Lei, Wang, Wei-Wei Wang, Yang Cai, Fu-Yun Zhao. (2020). Effects of porous fins on mixed convection and heat transfer mechanics in Lid-Driven cavities: Full modelling and parametric simulations. Transport in Porous Media, 132:495:534.