Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Food Science and Agriculture /

DOI:http://dx.doi.org/10.26855/ijfsa.2020.12.017

Effect of Blanching Pretreatments on the Physicochemical and Drying Characteristics of Chui Jhal ( Piper chaba H.) Stem

Date: December 24,2020 |Hits: 1273 Download PDF How to cite this paper
Rahmatuzzaman Rana1,*, Aminul Islam1, Ashfak Ahmed Sabuz2, Mehedi Hasan1, Rowshon Ara1

1Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.

2Postharvest Technology Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh.

*Corresponding author: Rahmatuzzaman Rana

Abstract

The research aimed to determine the effect of blanching pretreatment before drying at different temperatures and the chui jhal stem’s physicochemical quality. Blanching methods like hot water blanching (HWB) at 90 oC for 3 minutes, steam blanching (SB) for 5 minutes, and microwave blanching (MWB) at 600 watts for 120 seconds were applied before hot air drying at 50 oC, 60 oC, and 70 oC at a constant airflow velocity of 1.5 m/s and relative humidity 50%. Physical deterioration of pretreated samples was lower than untreated samples, affecting the amount of nutritional retention. MWB treated sample showed maximum shrinkage and contained low ascorbic acid and total polyphenol content, but preserved better color and capsaicin content. The shrinkage percentage was found lower in SB samples and HB samples, but the former retained more ascorbic acid, total polyphenol, and capsaicin relative to all pretreatment. The experimental data on moisture loss were fitted to select drying models, namely Lewis, Henderson, Pabis, and Page. The determination coefficient (R2) and root mean square error (RMSE) values of all models were compared. The Page model was considered most suitable for describing the drying characteristics of chui jhal stem. The page model had a good fitting of data with a high R2 value (>0.98), and low root mean square of error RMSE (<0.07). The percentage of nutrition retention was affected by blanching physical treatment, which affects the physical structure and various nutrient content and drying time.

References

[1] Bhandari, S. P. S., & Babu, U. V. (1998). A Lignan from Piper chaba stems. Phytochemistry, 47(7), 1435-1436. https://doi.org/10.1016/s0031-9422(97)00681-x.

[2] Kirtikar, K. R., & Basu, B. D. (1987). Indian Medicinal Plants, Piper chaba. International Book Distributors, 3, 2130-2131. https://doi.org/10.1007/978-0-387-70638-2_1203.

[3] Jin, J., Zhang, J., Guo, N., Feng, H., Li, L., Liang, J., ... & Deng, X. (2011). The Plant Alkaloid Piperine as a Potential Inhibitor of Ethidium Bromide Efflux in Mycobacterium Smegmatis. Journal of medical microbiology, 60(2), 223-229. https://doi.org/10.1099/jmm.0.025734-0.

[4] Yilbas, B., Hussain, M., & Dincer, I. (2003). Heat and Moisture Diffusion in Slab Products Due to Convective Boundary Con-dition. Heat and Mass Transfer, 39(5-6), 471-476. https://doi.org/10.1007/s00231-002-0323-x.

[5] Mrad, N. D., Boudhrioua, N., Kechaou, N., Courtois, F., & Bonazzi, C. (2012). Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and bioproducts processing, 90(3), 433-441. https://doi.org/10.1016/j.fbp.2011.11.009.

[6] Yu, Y., Jin, T. Z., & Xiao, G. (2017). Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. Journal of Food Processing and Preservation, 41(6), e13303. https://doi.org/10.1111/jfpp.13303.

[7] Xiao, H. W., Bai, J. W., Sun, D. W., & Gao, Z. J. (2014). The application of superheated steam impingement blanching (SSIB) in agricultural products processing–A review. Journal of Food Engineering, 132, 39-47. https://doi.org/10.1016/j.jfoodeng.2014.01.032.

[8] Wang, J., Yang, X. H., Mujumdar, A. S., Wang, D., Zhao, J. H., Fang, X. M., ... & Xiao, H. W. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT, 77, 337-347. https://doi.org/10.1016/j.lwt.2016.11.070.

[9] Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., & Parente, A. (2013). The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT-Food Science and Technology, 53(2), 569-579. https://doi.org/10.1016/j.lwt.2013.04.006.

[10] Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., ... & Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical reviews in food science and nutrition, 59(9), 1408-1432. https://doi.org/10.1080/10408398.2017.1409192.

[11] Bingol, G., Wang, B., Zhang, A., Pan, Z., & McHugh, T. H. (2014). Comparison of water and infrared blanching methods for processing performance and final product quality of French fries. Journal of Food Engineering, 121, 135-142. https://doi.org/10.1016/j.jfoodeng.2013.08.001.

[12] Cheng, L. S., Fang, S., & Ruan, M. L. (2015). Influence of blanching pretreatment on the drying characteristics of cherry tomato and mathematical modeling. International Journal of Food Engineering, 11(2), 265-274. https://doi.org/10.1515/ijfe-2014-0218.

[13] Araújo, A. C., Oliveira, S. M., Ramos, I. N., Brandão, T. R., & Silva, C. L. (2016). Influence of pretreatments on quality para-meters and nutritional compounds of dried galega kale (Brassica oleracea L. var. Acephala). Food and Bioprocess Technology, 9(5), 872-881. https://doi.org/10.1007/s11947-016-1678-1.

[14] Başkaya Sezer, D., & Demirdöven, A. (2015). The effects of microwave blanching conditions on carrot slices: optimization and comparison. Journal of Food Processing and Preservation, 39(6), 2188-2196. https://doi.org/10.1111/jfpp.12463.

[15] Sjöholm, I., & Gekas, V. (1995). Apple shrinkage upon drying. Journal of food engineering, 25(1), 123-130. https://doi.org/10.1016/0260-8774(94)00001-p.

[16] Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education.

[17] Reddy, C. V. K., Sreeramulu, D., & Raghunath, M. (2010). Antioxidant Activity of Fresh and Dry Fruits Co monly Consumed in India. Food research international, 43(1), 285-288. https://doi.org/10.1016/j.foodres.2009.10.006.

[18] Sadasivam, S. (1996). Biochemical methods. New age international. 2: 200. https://doi.org/10.1016/s0165-022x(96)90012-3.

[19] Islam, M. Z., Saha, T., Monalisa, K., & Hoque, M. M. (2019). Effect of Starch Edible Coating on Drying Characteristics and Antioxidant Properties of Papaya. Journal of Food Measurement and Characterization, 13(4), 2951-2960. https://doi.org/10.1007/s11694-019-00215-3.

[20] Rahath Kubra, I., Kumar, D., & Jagan Mohan Rao, L. (2016). Emerging trends in microwave processing of spices and herbs. Critical reviews in food science and nutrition, 56(13), 2160-2173. https://doi.org/10.1080/10408398.2013.818933.

[21] Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234(6), 1071-1079. https://doi.org/10.1007/s00217-012-1726-7.

[22] Del Bo’, C., Riso, P., Brambilla, A., Gardana, C., Rizzolo, A., Simonetti, P., ... & Porrini, M. (2012). Blanching improves an-thocyanin absorption from highbush blueberry (Vaccinium corymbosum L.) purée in healthy human volunteers: a pilot study. Journal of agricultural and food chemistry, 60(36), 9298-9304. https://doi.org/10.1021/jf3021333.

[23] Garba, U., Kaur, S., Gurumayum, S., & Rasane, P. (2015). Effect of hot water blanching time and drying temperature on the thin layer drying kinetics of and anthocyanin degradation in black carrot (Daucus carota L.) shreds. Food Technology and Bio-technology, 53(3), 324-330. https://doi.org/10.17113/ftb.53.03.15.3830.

[24] Koskiniemi, C. B., Truong, V. D., Simunovic, J., & McFeeters, R. F. (2011). Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system. Journal of food engineering, 105(1), 149-160. https://doi.org/10.1016/j.jfoodeng.2011.02.019.

[25] Gliszczyńska-Świgło, A., Ciska, E., Pawlak-Lemańska, K., Chmielewski, J., Borkowski, T., & Tyrakowska, B. (2006). Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants, 23(11), 1088-1098. https://doi.org/10.1080/02652030600887594.

[26] Arifin, U. F., & Djaeni, M. (2018). Thermal Degradation Kinetics of Capsaicin on Blanching-Brine-Calcium Pretreatment Red Chili Pepper Drying. Bulletin of Chemical Reaction Engineering & Catalysis, 13(2), 365-372. https://doi.org/10.9767/bcrec.13.2.1660.365-372.

[27] Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato—a review. Food Research Interna-tional, 50(2), 487-496. https://doi.org/10.1016/j.foodres.2011.04.025.

[28] Liu, P., Mujumdar, A. S., Zhang, M., & Jiang, H. (2015). Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Drying Technology, 33(1), 66-71. https://doi.org/10.1080/07373937.2014.936558.

[29] Nguyen, M. L., & Schwartz, S. J. (1999). Lycopene: Chemical chemical and biological properties: Developing nutraceuticals for the new millenium. Food Technology (Chicago), 53(2), 38-45.

[30] Singh, B., Panesar, P. S., & Nanda, V. (2006). Utilization of carrot pomace for the preparation of a value added product. World Journal of Dairy & Food Sciences, 1(1), 22-27. https://doi.org/10.1111/j.1745-4549.2006.00098.x.

[31] Sharma, G. P., & Prasad, S. (2004). Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. Journal of Food engineering, 65(4), 609-617. https://doi.org/10.1016/j.jfoodeng.2004.02.027.

[32] Sarkar, A., Ahmed, T., Alam, M., Rahman, S., & Pramanik, S. K. (2020). Influences of Osmotic Dehydration on Drying Beha-vior and Product Quality of Coconut (Cocos nucifera). Asian Food Science Journal, 21-30. https://doi.org/10.9734/afsj/2020/v15i330153.

[33] Azoubel, P. M., Baima, M. D. A. M., da Rocha Amorim, M., & Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. Journal of Food Engineering, 97(2), 194-198. https://doi.org/10.1016/j.jfoodeng.2009.10.009.

How to cite this paper

Effect of Blanching Pretreatments on the Physicochemical and Drying Characteristics of Chui Jhal (Piper chaba H.) Stem

How to cite this paper: Rahmatuzzaman Rana, Aminul Islam, Ashfak Ahmed Sabuz, Mehedi Hasan, Rowshon Ara. (2020) Effect of Blanching Pretreatments on the Physicochemical and Drying Characteristics of Chui Jhal (Piper chaba H.) Stem. International Journal of the Science of Food and Agriculture, 4(4), 482-491.

DOI: http://dx.doi.org/10.26855/ijfsa.2020.12.017

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.