References
[1] Nechval, K. N., Nechval, N. A., Vasermanis, E. K., & Makeev, V. Y. (2002). Constructing shortest-length confidence intervals, Transport and Telecommunication, vol. 3, pp. 95-103, 2002.
[2] Tate, R. F., & Klett, G. W. (1959). Optimum confidence intervals for the variance of a normal distribution, J. Am. Stat. Assoc., vol. 54, pp. 674-682, 1959.
[3] Nechval, N. A., Berzins, G., Purgailis, M., & Nechval, K. N. (2008). Improved estimation of state of stochastic sys-tems via invariant embedding technique, WSEAS Transactions on Mathematics, vol. 7, pp. 141-159, 2008.
[4] Nechval, N. A., Nechval, K. N., Danovich, V., & Liepins, T. (2011). Optimization of new-sample and within-sample prediction intervals for order statistics, in Proceedings of the 2011 World Congress in Computer Science, Computer Engineering, and Applied Computing, WORLDCOMP'11, 18-21 July, 2011, Las Vegas, Nevada, USA, pp. 91-97.
[5] Nechval, N. A., Berzins, G., Balina, S., Steinbuka, I., & Nechval, K. N. (2017). Constructing unbiased prediction limits on future outcomes under parametric uncertainty of underlying models via pivotal quantity averaging ap-proach, Autom. Control Comput. Sci., vol. 51, no. 5, pp. 331-346, 2017.
[6] Nechval, N. A., Berzins, G., & Nechval, K. N. (2018). Intelligent planning reliability-based inspections of fatigued structures for the crack initiation period in the Weibull case under parametric uncertainty, Autom. Control Comput. Sci., vol. 52, pp. 184-197, 2018.
[7] Nechval, N. A., Nechval, K. N., & Berzins, G. (2018). A new technique for intelligent constructing exact -content tolerance limits with expected (1)-confidence on future outcomes in the Weibull case using complete or type II censored data, Autom. Control Comput. Sci., vol. 52, pp. 476-488, 2018.
[8] Nechval, N. A., Berzins, G., Nechval, K. N., & Krasts, J. (2019). A new technique of intelligent constructing unbiased prediction limits on future order statistics coming from an inverse Gaussian distribution under parametric uncertainty, Autom. Control Comput. Sci., vol. 53, pp. 223-235, 2019.
[9] Nechval, N. A., Berzins, G., & Nechval, K. N. (2019). Intelligent technique of constructing exact statistical tolerance limits to predict future outcomes under parametric uncertainty for prognostics and health management of complex systems, International Journal of Advances in Computer Science & Its Applications (JCSIA), vol. 9, pp. 30-47, 2019.
[10] Nechval, N. A., Berzins, G., & Nechval, K. N. (2019). A novel intelligent technique for product acceptance process optimization on the basis of misclassification probability in the case of log-location-scale distributions, in: F. Wo-tawa et al. (Eds.), Advances and Trends in Artificial Intelligence. From Theory to Practice.IEA/AIE 2019, Lecture Notes in Computer Science, vol. 11606, pp. 801-818, Springer Nature Switzerland AG, 2019.
[11] Nechval, N. A., Berzins, G., & Nechval, K. N. (2020). A novel intelligent technique of invariant statistical embedding and averaging via pivotal quantities for optimization or improvement of statistical decision rules under parametric uncertainty, WSEAS Transactions on Mathematics, vol. 19, pp. 17-38, 2020.
[12] Nechval, N. A., Berzins, G., & Nechval, K. N. (2020). A new technique of invariant statistical embedding and av-eraging via pivotal quantities for intelligent constructing efficient statistical decisions under parametric uncertainty, Automatic Control and Computer Sciences, vol. 54, pp. 191-206, 2020.