References
[1] Alewell, C., Manderscheid, B. (1998). Use of objective criteria for the assessment of biogeochemical ecosystem models. Ecol. Model., 107 (2-3), 213-224.
[2] Anselin, A., Meire, P.M., Anselin, L. (1989). Multicriteria techniques in ecological evaluation: an example using the analytical hierarchy process. Biol. Conserv., 49 (3), 215-229.
[3] Bardgett RD, Shine A. (1999). Linkages between plant litter diversity, soil microbial biomass, and ecosystem function in temperate grasslands. Soil Biol Biochem, 31:317-321.
[4] Bargett, D., Shine, A. (1999). Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology & Biochemistry, 31, 317-321.
[5] Bartelt-Ryser J, Joshi J, Schmid B, Brandl H, Balser T. (2005). Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect Plant Ecol Evol Syst., 7:27-49.
[6] Bezemer TM, et al. (2006). Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. J Ecol., 94:893-904.
[7] Binkley D, Giardina C. (1998). Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry, 42:89-106.
[8] Bockelmann, B.N., Fenrich, E.K., Lin, B., et al. (2004). Development of an ecohydraulics model for stream and river restoration. Ecol. Eng., 22, 227-235.
[9] Bolton, H., Frederickson, J.K., Elliot, L.F. (1992). In: Microbial ecology of the rhizosphere. Metting, F.B. (Ed.), Soil Microbial Ecology. Marcel Dekker, New York, pp. 27-63.
[10] Bowen, G.D., Rovira, A.D. (1991). The rhizosphere, the hidden half of the hidden half. In: Waisel, Y., Eshel, A., Kafkafi, U. (Eds.), Plant Roots: The Hidden Half. Marcel Dekker Inc. New York, pp. 641-649.
[11] Bowen, G.D., Rovira, A.D. (1999). The rhizosphere and its management to improve plant growth. Advances in Agronomy, pp. 1-102.
[12] Buyer J S, Drinkwater L E. (1997). Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J Microbiol Meth, 30: 3-11.
[13] C.B. Li. (1990). Ecological study of Sichuan forest, Sichuan Publishing House of Science and Technology, Chengdu, 1990.
[14] Chapin, F.S., III, Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., et al. (2000). Consequences of changing biodiversity. Nature, 405: 234-242.
[15] Curl, E.A., Truelove, B. (1986). In: Curl, E.A., Truelove, B. (Eds.), The Rhizophere. Springer, New York, p. 288.
[16] Diakoulaki, D., Mavrotas, G., Papayannakis, L. (1995). Determining objective-weights in multiple criteria problems: the critic method. Comput. Oper. Res., 22 (7), 763-770.
[17] Dornbush ME. (2007). Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biol Biochem., 39:2241-2249.
[18] Embley T M, Finlay B J. (1994). The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen symbionts. Microbiology, 140: 225-235.
[19] Garland, J.L., Mills, A.L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. Applied and Environmental Microbiology, 57, 2351-2359.
[20] Garland, J.L. (1996). Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology & Biochemistry, 28, 213-221.
[21] Geraghty, P.J. (1993). Environmental assessment and the application of expert system: an overview. J. Environ. Manage., 39 (1), 27-38.
[22] Grayston, S.J., Campbell, C.D. (1996). Functional biodiversity of microbial communities in the rhizosphere of hybrid larch (Larix euro-lepsis) and Sitka spruce (Picea sitchensis). Tree Physiology, 16, 1031-1038.
[23] Grayston, S.J., Vaughan, D., Jones, D. (1996). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29-56.
[24] Hamilton EW, Frank DA. (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397-2402.
[25] Hotanen, J.P., Nousiainen, H. (1990). Metsa È-ja suokasvillisuuden numeerisen ryhmittelyn ja kasvupaikkatyyppien rinnastettavuus. Summary: The parity between numerical units and site types of forest and mire vegetation. Folia Forestalia, 763, 1-54 (in Finnish with English summary).
[26] J.W. Doran, M. Sarrantonio, M.A. Liebig. (1996). Soil health and sustainability. Advances in Agronomy, 56 (1996), 1-54.
[27] Kent, M., Coker, P. (1992). Vegetation Description and Analysis. A Practical Approach. Belhaven Press, London.
[28] Klungboonkrong, P., Taylor, M.A.P. (1998). Amicrocomputer-based-system for multicriteria environmental impacts evaluation of urban road networks. Comput. Environ. Urban Syst., 22 (5), 425-446.
[29] Knops JMH, Bradley KL, Wedin DA. (2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett., 5:454-466.
[30] Liu Na. Simulation of the Impact of Forest Succession and Climate Change on Carbon Cycle [D]. Northeast Forestry University, 2024. DOI: 10.27009/d.cnki.gdblu.2023.000020.
[31] Wang Yujiao. The effect of mixed walnut and red pine on soil characteristics and fine root traits [D]. Northeast Forestry University, 2021. DOI: 10.27009/d.cnki.gdblu.2021.000151.
[32] Zhu Yupeng. Study on plant diversity of typical broad-leaved Pinus koraiensis forest communities in Northeast China. Journal of Hei-longjiang Ecological Engineering Vocational College, 2020, 33 (06): 24-29.