magazinelogo

Journal of Electrical Power & Energy Systems

ISSN Online: 2576-053X Downloads: 53473 Total View: 537443
Frequency: semi-annually ISSN Print: 2576-0521 CODEN: JEPEEG
Email: jepes@hillpublisher.com

Volumes & Issues

Current Issue

Article Open Access http://dx.doi.org/10.26855/jepes.2023.06.003

Liquid-solid Equilibrium Position and Critical Point for Benzene

Yüksel Sarıkaya1, Beycan İbrahimoglu2,*, Muserref Onal1, Beycan Jr. Ibrahimoglu3

1Ankara University, Ankara, Turkey.

2Ankara Science University, Ankara, Turkey.

3Anadolu Plasma Technology Center, Turkey.

*Corresponding author: Beycan İbrahimoglu

Published: May 12,2023

Abstract

Using a specially constructed experimental apparatus, the freezing thermograms of benzene at increasingly higher constant pressures and temperatures were determined. The isotherm reversible freezing of liquid benzene, which metastabilizes irreversibly through super cooling and isentalpic transformation steps, is studied in detail. In addition to the temperature and pressure changes, it was determined that the step times decreased rapidly due to increasing pressure and temperature and reached zero. Where these quantities are zero, 356 K and 2230 bar are considered as the temperature and pressure of the critical point of the liquid-solid equilibrium line, respectively. The liquid-solid equilibrium line for the variation of pressure with temperature between this critical point and the triple point is precisely determined. A pressure-temperature phase diagram with the critical point and this test line is arranged for benzene. The irreversible metastabilization of liquid benzene has been studied thermodynamically. It has been determined that enthalpy, entropy, volume and internal energy changes and work done on the system decrease rapidly with temperature and pressure as they gradually increase and approach zero at critical values.

Keywords

Benzene, freezing, metastabilization, liquid-solid equilibrium, critical point, super cooling, isentalpic change

References

[1] Admovich, S.D Baalrud, A. Bogaerts, et al. The 2017 Plazma Roadmap: Low temperature plazma science and technology. J. Phys. D: Appl. Phys., 50(2017), 223001 (46pp). https://doi.org/10.1088/1361-6463-aa7615.

[2] V.P. Skripov. Phase equilibria and metastable states. Inzhernerno Fizicheskii Zhurnal., 53/5 (1988), 820-826.

[3] V.G. Baidakov and S.P. Protsenko. Metastable extension of the sublimation curve and critical contact point. J. Chem. Phys., 124 (2006), 231101. https://doi.org/10.10.1069/1.2183770.

[4] V.G. Baidakov and S.P. Protsenko. Metastable Phase equilibria in a Lennard-Jones system. Journal of Engineering Thermopyhsics, 16 (2007), 249-258.

[5] V. V. Brazhkin. Metastable phases and “metastable” Phase diagrams. J. Phys: Condens. Matter, 18 (2006), 9643-9650. Doi: 10.1088/0953-8984/18/42/010.

[6] V.G. Baidakov. Phase equilibria, metastable states, and critical points in a simple one-component system. Journal of Engineering Thermophysics, 25 (2016), 327-336.

[7] G. Jaeger, R.H. Stuewer. The Ehrenfest classification of Phase transitions: Introduction and Evolution. Arch. Hist. Exact Sci., 53 (1998), 51-58.

[8] L.A. Weber. Vapor Pressure of heptane from the triple point to the critical point. J. Chem. Eng. Data, 45 (2000), 173-176.

[9] A. V. Dzyabchenko. From Molecule to solid: The prediction of organic crystal structures. Russian Journal of Physical Chemistry A., 82 (2008), 1663-1671.

[10] B. İbrahimoğlu, M. Z. Yılmazoğlu, F. Karakaya, B. İbrahimoğlu (Jr.). Position of plasma in the phase diagram. Journal of the Faculty of Engineering and Architecture of Gazi University, 37:2 (2022) 939-948.

[11] B. İbrahimoğlu, Y. Sarıkaya and B. İbrahimoğlu (Jr). Utilization of graphical method to determinete characteristics of desublimation equilibrium curve of benzonitrile. International Journal of Modern Engineering Research (JSMER), 12/8 (2022), 1-7.

[12] P. W. Bridgman. Change of Phase under Pressure. I. The phase diagram of eleven substances with especial reference to the melting curve. The Physical Review. III., 3 (1914), 153-203.

[13] P.W. Bridgman. Freezing and compressions to 50.000 kg/cm2. Journal of chemical Physics, 9 (1940), 194-1505.

[14] N.B. Vargaftik, Y.K. Vinogradov and V.S. Yorgin. Handbook of Physical Properties of Liquids and Gases. Begell House Inc. New York. 1996.

[15] D.I. Sagdeev, M.G. Fomina, G. Kh. Mukhammedzyonov, I. M Abdulagatov. Experimental dtudy of the Density and viscosity of n. heptane at temperatures from 298 K to 470 K and pressures up to 245 MPa. Int. J Thermophys, 34 (2013), 1-33. Doi: 10.1007/s10765-012-1373-2.

[16] V. I. Nedostup. Classical ideal curves in the Phase diagrams for simple substances. High Temperature, 53 (2015), 62-67.

[17] D. Balmatov, V.V. Brozhkin and K.Trachenko. Thermodynamic behaviour of supercritical matter. Nature Communications [4:2331] 2013. Doi: 10.1038/ncomms 3331/www.nature.com/natüre_communications.

[18] D.T.Banuti, M. Roju and M. Ihme. Between supercritical liquids and gases-reconciling dynamic and thermodynamic state transitions. J.of supercritical fluids, 165 (2020), 104895.

[19] A. Mouahid, Pierre Boivin, S. Diaw, E. Badens. Widom and exreme lines as criteria for optimizing operating condisitions in supercritical processes. The Journal of supercritical fluids, 186 (2022), 105587. https://doi.org/10.1016/j.supflu.2022.105587.

[20] S.C. Tucker. Solvent Density inhomogeneities in supercritical fluids. Chem. Rev., 99 (1999), 394-418.

[21] G. Brunner. Applications of supercritical fluids. Annu. Rev. Chem Biomol. Eng., 1 (2010), 321-342.

[22] F.I.G. Ortiz and A. Kruse. The use of process simulation in supercritical fluids applications. React. Chem. Eng., 5 (2020), 424-451.

[23] J. Akella and G.C. Kennedy. Phase diagram of benzene to 35 kbar. J. Chem. Phys., 55 (1971), 973-975.

[24] F. Cansell, D. Fabre and J-P. Petitet. Phase transations and chemical transformations of benzene up to 550oC and 30 GPa. J. Chem. Phys., 99/10 (1993), 7300-7304.

[25] A.D. Chanyshev, K.D. Litasov, S.V. Rashchenko et al. High-pressure-high temperature study of benzene: Refined crystal structure and new Phase diagram up to 8 GPa and 923 K. Cryst. Growth Des., 18 (2018), 3016-3026.

[26] G.J. Piermarini, A.D. Mighell, C.E. Weir and S.Block. Crystal structure of benzene II at 25 kilobars. Science, 165 (1969), 1250-1255.

[27] P. Figuiere, A.H. Fuchs, M. Ghelfenstein and H. Szwarc. Pressure-volume-tempereature relations for crystalline benzene. J. Phys. Chem. Solids., 99 (1978), 19-24.

[28] P. Raiteri, R. Martonak and M. Parrinello. Exploring polymorphism: The case of benzene. Angw. Chem. Int. Ed., 44 (2005), 3769-3773. Doi: 10.1107/S01087681D503747X.

[29] A. Budzianowski and A. Katrusiak. Pressure-frozen benzene/revisited.

[30] H. Yurtseven and M.G. Şenel Temperature and Pressure dependance of the linewidth for an internal mode in the solid phases of benzene. Acta Physical Polonica A., 124 (2013), 698-701.

[31] L. Ciabini, F.A. Gorelli, M. Santora et al. High-pressure and high temperature equation of state and Phase diagram of solid benzene. Physical Review B72 (2005) 094108. Doi: 10.1103/Phys:Rev.B. 72.094108.

[32] L. Ciabini, M. Santoro, F.A. Gorelli et al. Triggering Dynamics of the high-pressure benzene amorphization. Nature Materials, 6 (2007), 39-42.

[33] A.Katrusiak, M. Podsiadlo and A. Budzianowski. Association CH…TT and no van der Waals contrasts at the lowest limits of crystalline benzene I and II stability regions. Crystal Growth and Design, 10 (2010), 3461-3465. doi: 10.1024/cg.1002594.

[34] X-D. Wen, R. Hoffmann and N.W. Ashcraft. Benzene under Pressure: a story of molecular crystals transforming to sturated networks, with a possible intermediate metallic Phase. J. Am. Chem. Soc., 133 (2011), 9023-9035.

[35] M. Azreg-Ainou, A. Huseynov and B. Ibrahimoglu. Phase equilibrium and metastability of liquid benzene at high Pressure. J. Chem. Phys., 124 (2006), 204505-1.

[36] M. Azreg-Ainou and B.Ibrahimoglu. High-pressure effect on the benzene precrystallization metastable states. Eur. Phys. J. E42 (2019), 96. doi: 10.1140/epje/i2019-11863-2.

[37] B. Ibrahimoglu, D. Uner, A. Veziroglu et al. Consturction of Phase diagrams to estimate Phase transitions at high pressures: A critical point at the solid liquid transition for benzene. International Journal of Hydrogen energy, 46 (2021), 15168-15180. doi: https://doi.org/10.1016/j.ijhydene.2021.02.010.

[38] G.D. Oliver, M. Eaton and H.M. Huffman. The heat capacity, heat of fusion and entropy of benzene. J. Am. Chem. Soc., 70/4 (1948), 1502-1505. doi: https://doi.org/90.10251jao1184a062.

How to cite this paper

Liquid-solid Equilibrium Position and Critical Point for Benzene

How to cite this paper: Yüksel Sarıkaya, Beycan İbrahimoglu, Muserref Onal, Beycan Jr. Ibrahimoglu. (2023) Liquid-solid Equilibrium Position and Critical Point for Benzene. Journal of Electrical Power & Energy Systems7(1), 11-20.

DOI: http://dx.doi.org/10.26855/jepes.2023.06.003