Ousmane Samba Coulibaly1,*, Boureima Sangaré2
1Department of Mathematics, University of Science, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.
2Department of Mathematics, University Nazi BONI, Bobo-Dioulasso, Houet, Burkina Faso.
*Corresponding author: Ousmane Samba Coulibaly
References
[1] A. Alqahtani, R. Ramlau, L. Reichel. Error Estimates for GolubKahan Bidiagonalization with Tikhonov Regularization for Illposed Operator Equations, Abdulaziz Alqahtani et al 2022 Inverse Problems in press https://doi.org/10.1088/1361-6420/aca754, pp. 1- 23.
[2] Abdulaziz Alqahtani, Silvia Gazzola, Lothar Reichel, Giuseppe Rodriguez. On the block Lanczos and block GolubKahan reduction methods applied to discrete ill-posed problems, Wiley, Numer Linear Algebra Appl. 2021;e2376. wileyonlineli-brary.com/journal/nla, pp. 1- 22.
[3] Ou Xie, Zhenyu Zhao. Identifying an unknown source in the Poisson equation by a modified Tikhonov regularization method, International Journal of Mathematical and Computational Sciences 6 (2012), pp. 86- 90.
[4] Nicholas J. Higham, Matrix Functions, Theory and Application, SIAM - Philadelphia, USA, 2008.
[5] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl. 19 (1998), 755-771.
[6] V. Druskin and L. Knizhnerman, Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic, Numer Linear Algebra Appl. 2 (1995), 205- 217.
[7] Y.Saad , Iterative Methods for Sparse Linear Systems, second ed., SIAM - Philadelphia, USA, 2003 .
[8] X.X.Li, F.Yang,The truncation method for identifying the heat source dependent on a spatial variable, Computers and Mathematics with Applications 62 (2011), pp. 2497- 2505.
[9] Monaghan, A.J., Chebyshev series approximation on complex domains, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7168/, 1984.
[10] V. L. Druskin and L. A. Knizhnerman, Two Polynomial methods of calculating functions of symmetric matrices, U.S.S.R comput.maths.math.phys., vol.29, No.6 (1989), pp. 112-121.
[11] Stefan Paszkowski, Computation applications of Chebyshev polynomials and series, Moscow, Nauka, 1983.
[12] Abdallah Bouzitouna, Nadjib Boussetila, Faouzia Rebbani, Two regularization methods for a class of inverse boundary value problems of elliptic type, Bouzitouna et al. Boundary Value Problems 2013, 2013:178, pp. 1. 23. a SpringOpen Journal http://www.boundaryvalueproblems.com/content/2013/1/178.
[13] I. Moret and P. Novati, Krylov subspace methods for functions of fractional differential operators. Mathematics of Computation, 88, 11 2017. doi: 10.1090/mcom/3332.
[14] M. Benzi and I. Simunec, Rational Krylov methods for fractional diffusion problems on graphs. arXiv e-prints, art. ar-Xiv:2012.08389, dec 2020.
[15] Stefan G¨uttel, Convergence Estimates of Krylov Subspace Methods for the Approximation of Matrix Functions Using Tools from Potential Theory, Masters thesis, Technische Universit¨at Bergakademie Freiberg 2006.