Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Clinical and Experimental Medicine Research /

DOI:http://dx.doi.org/10.26855/ijcemr.2023.04.001

Progress in the Protective Mechanism of Salidroside in Chronic Obstructive Pulmonary Disease

Date: March 15,2023 |Hits: 1165 Download PDF How to cite this paper

Ming Ruan, Ruicheng Hu*

The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, China.

*Corresponding author: Ruicheng Hu

Abstract

Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease that is persistent, repeatedly deteriorating airway obstruction due to respiratory abnormalities (bubuchitis, bronchiolitis) and/or alveolar abnormalities (emphysema). Salidroside, a widespread natural phenolic secondary metabolite found in Rhododiola, has several pharmacological effects. Relevant studies have shown that salidroside has protective effects in anti-diabetes, anti-cancer, anti-aging, heart and nerve protection, etc. Due to the limitations of clinical drug use in COPD, salidroside has multiple functions and low side effects, and its protective effect and mechanism of action on COPD have attracted increasing attention. By collecting relevant papers published in recent years, reviewed in the literature against oxidative stress, regulation of protease/anti-protease imbalance, anti-inflammatory, anti-bronchiolar and interstitial fibrosis, anti-telomere shortening, expounds the protective effect and mechanism of its effect in COPD, and provide reference for its clinical application. The clinical and experimental data are not sufficient, and the role and mechanism of salidroside need to be further studied.

References

[1] Global strategy for the diagnosis, management and prevention of chronic obstructive puhnonary disease [WOEl. ] 2021-12-28.  https://goldcopd.org/202-gold-reports/. 

[2] Halpin DMG, Celli BR, Criner GJ, Frith P, López Varela MV, Salvi S, Vogelmeier CF, Chen R, Mortimer K, Montes de Oca M, Aisanov Z, Obaseki D, Decker R, Agusti A. The GOLD Summit on chronic obstructive pulmonary disease in low- and middle-income countries.  Int J Tuberc Lung Dis., 2019 Nov 1;  23(11):1131-1141. 

doi: 10.5588/ijtld.19.0397.  PMID: 31718748. 

[3] GBD Chronic Respiratory Disease Collaborators.  Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.  Lancet Respir Med. 2020 Jun;  8(6):585-596.  doi: 10.1016/S2213-2600(20)30105-3.  PMID: 32526187;  PMCID: PMC7284317. 

[4] Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD.  Signal Transduct Target Ther. 2020 Oct 27;  5(1):248.  doi: 10.1038/s41392-020-00345-x.  PMID: 33110061;  PMCID: PMC7588592. 

[5] Koarai A, Yamada M, Ichikawa T, Fujino N, Kawayama T, Sugiura H. Triple versus LAMA/LABA combination therapy for patients with COPD: a systematic review and meta-analysis.  Respir Res. 2021 Jun 22;  22(1):183. 

doi: 10.1186/s12931-021-01777-x.  PMID: 34154582;  PMCID: PMC8218448. 

[6] Liapikou A, Toumbis M, Torres A. Managing the safety of inhaled corticosteroids in COPD and the risk of pneumonia.  Expert Opin Drug Saf. 2015 Aug;  14(8):1237-47.  doi: 10.1517/14740338.2015.1057494.  Epub 2015 Jun 25.  PMID: 26113207. 

[7] Burt MG, Roberts GW, Aguilar-Loza NR, Frith P, Stranks SN.  Continuous monitoring of circadian glycemic patterns in patients receiving prednisolone for COPD.  J Clin Endocrinol Metab. 2011 Jun;  96(6):1789-96.  doi: 10.1210/jc.2010-2729.  Epub 2011 Mar 16.  PMID: 21411550. 

[8] Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy.  Phytomedicine. 2010 Jun;  17(7):481-93.  doi: 10.1016/j.phymed.2010.02.002.  Epub 2010 Apr 7.  PMID: 20378318. 

[9] Zhang X, Xie L, Long J, Xie Q, Zheng Y, Liu K, Li X. Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties.  Chem Biol Interact. 2021 Apr 25;  339:109268.  doi: 10.1016/j.cbi.2020.109268.  Epub 2021 Feb 20.  PMID: 33617801. 

[10] Kelly GS.  Rhodiola rosea: a possible plant adaptogen.  Altern Med Rev. 2001 Jun;  6(3):293-302.  PMID: 11410073. 

[11] Pu WL, Zhang MY, Bai RY, Sun LK, Li WH, Yu YL, Zhang Y, Song L, Wang ZX, Peng YF, Shi H, Zhou K, Li TX. Anti-inflammatory effects of Rhodiola rosea L.: A review.  Biomed Pharmacother. 2020 Jan;  121:109552. 

doi: 10.1016/j.biopha.2019.109552.  Epub 2019 Nov 9.  PMID: 31715370. 

[12] Zhuang W, Yue L, Dang X, Chen F, Gong Y, Lin X, Luo Y. Rosenroot (Rhodiola): Potential Applications in Aging-related Diseases.  Aging Dis. 2019 Feb 1;  10(1):134-146.  doi: 10.14336/AD.2018.0511.  PMID: 30705774;  PMCID: PMC6345333. 

[13] Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system.  Drug Des Devel Ther. 2018 May 24;  12:1479-1489. 

doi: 10.2147/DDDT.S160776.  PMID: 29872270;  PMCID: PMC5973445. 

[14] Zheng T, Bian F, Chen L, Wang Q, Jin S. Beneficial Effects of Rhodiola and Salidroside in Diabetes: Potential Role of AMP-Activated Protein Kinase.  Mol Diagn Ther. 2019 Aug;  23(4):489-498.  doi: 10.1007/s40291-019-00402-4.  PMID: 31069710. 

[15] Sun S, Tuo Q, Li D, Wang X, Li X, Zhang Y, Zhao G, Lin F. Antioxidant Effects of Salidroside in the Cardiovascular System.  Evid Based Complement Alternat Med. 2020 Sep 26;  2020:9568647.  doi: 10.1155/2020/9568647.  PMID: 33062029;  PMCID: PMC7533795. 

[16] Amsterdam JD, Panossian AG.  Rhodiola rosea L. as a putative botanical antidepressant.  Phytomedicine. 2016 Jun 15;  23(7):770-83.  doi: 10.1016/j.phymed.2016.02.009.  Epub 2016 Feb 24.  PMID: 27013349. 

[17] Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug?  Curr Drug Metab. 2020;  21(7):512-524. 

doi: 10.2174/1389200221666200610172105.  PMID: 32520682. 

[18] Barnes PJ.  Oxidative stress-based therapeutics in COPD.  Redox Biol. 2020 Jun;  33:101544.  doi: 10.1016/j.redox.2020.101544.  Epub 2020 Apr 20.  PMID: 32336666;  PMCID: PMC7251237. 

[19] Zhu A, Ge D, Zhang J, Teng Y, Yuan C, Huang M, Adcock IM, Barnes PJ, Yao X. Sputum myeloperoxidase in chronic ob-structive pulmonary disease.  Eur J Med Res. 2014 Mar 3;  19(1):12.  doi: 10.1186/2047-783X-19-12.  PMID: 24588870;  PMCID: PMC4016613. 

[20] Luo F, Liu J, Yan T, Miao M. Salidroside alleviates cigarette smoke-induced COPD in mice.  Biomed Pharmacother. 2017 Feb;  86:155-161.  doi: 10.1016/j.biopha.2016.12.032.  Epub 2016 Dec 12.  PMID: 27978494.

[21] Hou Hongping, Zhang Guangping, Gao Yunhang, Li Han, Song Ling, Chen Tengfei, Zhang Zhongxiu, Ye Zuguang. Protective effect of salidroside on chronic obstructive pulmonary disease in vitro and its antioxidative stress mechanism [J]. New Chinese medicine and clinical pharmacology, 2020, 31(12):1389-1393.DOI:10.19378/j.issn.1003-9783.2020.12.001.

[22] Konietzko N. Wie Carl-Bertil Laurell und Sten Eriksson vor 50 Jahren den Alpha-1-Antitrypsin-Mangel entdeckten und was danach kam – ein etwas eigenwilliger persönlicher Rückblick [How Carl-Bertil Laurell and Sten Eriksson Detected the Alpha-1-Antitrypsin Deficiency 50 Years Ago and What Then Came - A Somewhat Headstrong and Personal Retrospection]. Pneumologie. 2016 Dec; 70(S 02):S169-S173. German. doi: 10.1055/s-0042-118375. Epub 2016 Dec 7. PMID: 27926963.

[23] Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011; 6:413-21. 

doi: 10.2147/COPD.S10770. Epub 2011 Aug 5. PMID: 21857781; PMCID: PMC3157944.

[24] Aldonyte R, Jansson L, Ljungberg O, Larsson S, Janciauskiene S. Polymerized alpha-antitrypsin is present on lung vascular endothelium. New insights into the biological significance of alpha-antitrypsin polymerization. Histopathology. 2004 Dec; 45(6):587-92. doi: 10.1111/j.1365-2559.2004.02021.x. PMID: 15569049.

[25] Wencker M, Banik N, Buhl R, Seidel R, Konietzko N. Long-term treatment of alpha1-antitrypsin deficiency-related pulmonary emphysema with human alpha1-antitrypsin. Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL)-alpha1-AT-study group. Eur Respir J. 1998 Feb; 11(2):428-33. 

doi: 10.1183/09031936.98.11020428. PMID: 9551749.

[26] Kwok JS, Lawton JW, Yew WW, Chau CH, Lee J, Wong PC. Protease inhibitor phenotypes and serum alpha-1-antitrypsin levels in patients with COPD: a study from Hong Kong. Respirology. 2004 Jun; 9(2):265-70. 

doi: 10.1111/j.1440-1843.2004.00560.x. PMID: 15182280.

[27] Sun J, Bao J, Shi Y, Zhang B, Yuan L, Li J, Zhang L, Sun M, Zhang L, Sun W. Effect of simvastatin on MMPs and TIMPs in cigarette smoke-induced rat COPD model. Int J Chron Obstruct Pulmon Dis. 2017 Feb 22; 12:717-724. 

doi: 10.2147/COPD.S110520. PMID: 28260878; PMCID: PMC5327908.

[28] Montaño M, Sansores RH, Becerril C, Cisneros J, González-Avila G, Sommer B, Ochoa L, Herrera I, Ramírez-Venegas A, Ramos C. FEV1 inversely correlates with metalloproteinases 1, 7, 9 and CRP in COPD by biomass smoke exposure. Respir Res. 2014 Jun 30; 15(1):74. doi: 10.1186/1465-9921-15-74. PMID: 24980707; PMCID: PMC4086695.

[29] Jiang S, Yang ZH, Chen YY, He Z, Zhou Y, Gao Y, Zhang Q, Tan MQ. MMP-9 genetic polymorphism may confer suscepti-bility to COPD. Genet Mol Res. 2016 Apr 25; 15(2). doi: 10.4238/gmr.15026272. PMID: 27173221.

[30] Vlahos R, Wark PA, Anderson GP, Bozinovski S. Glucocorticosteroids differentially regulate MMP-9 and neutrophil elastase in COPD. PLoS One. 2012; 7(3):e33277. 

doi: 10.1371/journal.pone.0033277. Epub 2012 Mar 7. PMID: 22413009; PMCID: PMC3296684.

[31] Wells JM, Parker MM, Oster RA, Bowler RP, Dransfield MT, Bhatt SP, Cho MH, Kim V, Curtis JL, Martinez FJ, Paine R 3rd, O'Neal W, Labaki WW, Kaner RJ, Barjaktarevic I, Han MK, Silverman EK, Crapo JD, Barr RG, Woodruff P, Castaldi PJ, Gaggar A; SPIROMICS and COPDGene Investigators. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight. 2018 Nov 15; 3(22):e123614. 

doi: 10.1172/jci.insight.123614. PMID: 30429371; PMCID: PMC6302944.

[32] Hou HH, Wang HC, Cheng SL, Chen YF, Lu KZ, Yu CJ. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol. 2018 Sep 1; 315(3):L432-L442. doi: 10.1152/ajplung.00216.2017. Epub 2018 May 3. PMID: 29722565.

[33] Li H, Yang T, Wu R, Chen T, Sun Z, Yang L. Salidroside inhibits platelet-derived growth factor-induced proliferation and migration of airway smooth muscle cells. J Cell Biochem. 2019 Apr; 120(4):6642-6650. doi: 10.1002/jcb.27960. Epub 2018 Dec 14. PMID: 30552692.

[34] Zhang H, Dong W, Li S, Zhang Y, Lv Z, Yang L, Jiang L, Wu T, Wang Y. Salidroside protects against ventilation-induced lung injury by inhibiting the expression of matrix metalloproteinase-9. Pharm Biol. 2021 Dec; 59(1):760-768. 

doi: 10.1080/13880209.2021.1967409. PMID: 34517742; PMCID: PMC8439245.

[35] Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016 Jul; 138(1):16-27. doi: 10.1016/j.jaci.2016.05.011. Epub 2016 May 27. PMID: 27373322.

[36] Wang Y, Xu J, Meng Y, Adcock IM, Yao X. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 2018 Oct 12; 13:3341-3348. doi: 10.2147/COPD.S176122. PMID: 30349237; PMCID: PMC6190811.

[37] Tetley TD. Macrophages and the pathogenesis of COPD. Chest. 2002 May; 121(5 Suppl):156S-159S. 

doi: 10.1378/chest.121.5_suppl.156s. PMID: 12010845.

[38] El-Gazzar AG, Kamel MH, Elbahnasy OKM, El-Naggar ME. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Expert Rev Respir Med. 2020 Jan; 14(1):111-116. doi: 10.1080/17476348.2019.1675517. Epub 2019 Oct 13. PMID: 31577911.

[39] Kim S, Nadel JA. Role of neutrophils in mucus hypersecretion in COPD and implications for therapy. Treat Respir Med. 2004; 3(3):147-59. doi: 10.2165/00151829-200403030-00003. PMID: 15219174.

[40] Paliogiannis P, Fois AG, Sotgia S, Mangoni AA, Zinellu E, Pirina P, Negri S, Carru C, Zinellu A. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: recent evidence and future perspectives. Eur Respir Rev. 2018 Feb 7; 27(147):170113. doi: 10.1183/16000617.0113-2017. PMID: 29436405.

[41] Li JS, Fan LY, Yuan MD, Xing MY. Salidroside Inhibits Lipopolysaccharide-ethanol-induced Activation of Proinflammatory Macrophages via Notch Signaling Pathway. Curr Med Sci. 2019 Aug; 39(4):526-533. doi: 10.1007/s11596-019-2069-4. Epub 2019 Jul 25. PMID: 31346986.

[42] Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep. 2020 Nov 27; 10(1):20750. 

doi: 10.1038/s41598-020-77448-6. PMID: 33247202; PMCID: PMC7695860.

[43] Lin SS, Chin LW, Chao PC, Lai YY, Lin LY, Chou MY, Chou MC, Wei JC, Yang CC. In vivo Th1 and Th2 cytokine modula-tion effects of Rhodiola rosea standardised solution and its major constituent, salidroside. Phytother Res. 2011 Nov; 25(11):1604-11. doi: 10.1002/ptr.3451. Epub 2011 Mar 11. PMID: 21394811.

[44] Luo F, Liu J, Yan T, Miao M. Salidroside alleviates cigarette smoke-induced COPD in mice. Biomed Pharmacother. 2017 Feb; 86:155-161. doi: 10.1016/j.biopha.2016.12.032. Epub 2016 Dec 12. PMID: 27978494.

[45] Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. Am J Respir Crit Care Med. 2006 Dec 15; 174(12):1327-34. doi: 10.1164/rccm.200605-585OC. Epub 2006 Sep 28. PMID: 17008639.

[46] Huang Ying, Zhou Fen, Yuan Wensheng, Xu Fang. Effects of salidroside on inflammation and airway remodeling in chronic obstructive pulmonary disease [J]. Journal of practical medicine, 2022, 38(14):1753-1758.

[47] Zhang D, Cao L, Wang Z, Feng H, Cai X, Xu M, Li M, Yu N, Yin Y, Wang W, Kang J. Salidroside mitigates skeletal muscle atrophy in rats with cigarette smoke-induced COPD by up-regulating myogenin and down-regulating myostatin expression. Biosci Rep. 2019 Nov 29; 39(11):BSR20190440. doi: 10.1042/BSR20190440. PMID: 31702007; PMCID: PMC6879355.

[48] Hayflick L. The Limited In Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 1965 Mar; 37:614-36. 

doi: 10.1016/0014-4827(65)90211-9. PMID: 14315085.

[49] Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006 Oct 15; 174(8):886-93. doi: 10.1164/rccm.200509-1374OC. Epub 2006 Aug 3. PMID: 16888288.

[50] Alder JK, Guo N, Kembou F, Parry EM, Anderson CJ, Gorgy AI, Walsh MF, Sussan T, Biswal S, Mitzner W, Tuder RM, Armanios M. Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med. 2011 Oct 15; 184(8):904-12. doi: 10.1164/rccm.201103-0520OC. Epub 2011 Jul 14. PMID: 21757622; PMCID: PMC3208661.

[51] Chen R, Zhang K, Chen H, Zhao X, Wang J, Li L, Cong Y, Ju Z, Xu D, Williams BR, Jia J, Liu JP. Telomerase Deficiency Causes Alveolar Stem Cell Senescence-associated Low-grade Inflammation in Lungs. J Biol Chem. 2015 Dec 25; 290(52):30813-29. doi: 10.1074/jbc.M115.681619. Epub 2015 Oct 30. PMID: 26518879; PMCID: PMC4692211.

[52] Córdoba-Lanús E, Cazorla-Rivero S, García-Bello MA, Mayato D, Gonzalvo F, Ayra-Plasencia J, Celli B, Casanova C. Telomere length dynamics over 10-years and related outcomes in patients with COPD. Respir Res. 2021 Feb 15; 22(1):56. doi: 10.1186/s12931-021-01616-z. PMID: 33608013; PMCID: PMC7896411.

[53] Ma W, Wang Z, Zhao Y, Wang Q, Zhang Y, Lei P, Lu W, Yan S, Zhou J, Li X, Yu W, Zhong Y, Chen L, Zheng T. Salidroside Suppresses the Proliferation and Migration of Human Lung Cancer Cells through AMPK-Dependent NLRP3 Inflammasome Regulation. Oxid Med Cell Longev. 2021 Aug 19; 2021:6614574. 

doi: 10.1155/2021/6614574. PMID: 34457117; PMCID: PMC8390167.

[54] Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y, Song F. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed Pharmacother. 2020 Feb; 122:109726.

[55] Jin P, Li LH, Shi Y, Hu NB. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene. 2021 Jan 30; 767:145075. doi: 10.1016/j.gene.2020.145075. Epub 2020 Aug 25. PMID: 32858179.

[56] Amsterdam JD, Panossian AG. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine. 2016 Jun 15; 23(7):770-83. doi: 10.1016/j.phymed.2016.02.009. Epub 2016 Feb 24. PMID: 27013349.

[57] Wang YF, Chang YY, Zhang XM, Gao MT, Zhang QL, Li X, Zhang L, Yao WF. Salidroside protects against osteoporosis in ovariectomized rats by inhibiting oxidative stress and promoting osteogenesis via Nrf2 activation. Phytomedicine. 2022 Feb 27; 99:154020. doi: 10.1016/j.phymed.2022.154020. Epub ahead of print. PMID: 35278902.

How to cite this paper

Progress in the Protective Mechanism of Salidroside in Chronic Obstructive Pulmonary Disease

How to cite this paper: Ming Ruan, Ruicheng Hu. (2023) Progress in the Protective Mechanism of Salidroside in Chronic Obstructive Pulmonary Disease. International Journal of Clinical and Experimental Medicine Research7(2), 103-110.

DOI: http://dx.doi.org/10.26855/ijcemr.2023.04.001

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.