References
[1] M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line search, IMA J. Numer. Anal., 5 (1985), 121-124.
[2] N. Andrei, 40 Conjugate Gradient Algorithms for unconstrained optimization, A survey on their definition, ICI Technical Report, 13/08, 2008.
[3] N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization, Encyclopedia of Optimization, 2560-2571, 2009.
[4] N. Andrei, A Hybrid Conjugate Gradient Algorithm with Modified Secant Condition for Unconstrained Optimization as a Convex Combination of Hestenes-Stiefel and Dai-Yuan Algorithms, STUDIES IN INFORMATICS AND CONTROL, 17, 4 (2008), 373-392.
[5] N. Andrei, A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan, Studies in Informatics and Control, 17, 1 (2008), 55-70.
[6] N. Andrei, Another hybrid conjugate gradient algorithm for unconstrained optimization, Numerical Algorithms, 47, 2 (2008), 143-156.
[7] N. Andrei, An unconstrained optimization test functions, Advanced Modeling and Optimization. An Electronic International Journal, 10 (2008), 147-161.
[8] N. Andrei, Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization, Numer. Algorithms 54 (2010) 23-46.
[9] Y.H. Dai, Y.Yuan, Convergence properties of the Fletcher-Reeves method, IMA J. Numer. Anal., 16 (1996), 155-164.
[10] Y. H. Dai,, L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim. 43 (2001), 87-101.
[11] Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
[12] Y.H.Dai, Han J.Y., Liu G.H., Sun D.F., Yin X., Yuan Y., Convergence properties of nonlinear conjugate gradient methods, SIAM Journal on Optimization, 10 (1999), 348-358.
[13] S. S. Đorđević, New hybrid conjugate gradient method as a convex combination of FR and PRP methods, Filomat, 30:11 (2016), 3083-3100.
[14] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Programming, 91 (2002), 201-213.
[15] R. Fletcher, Practical methods of optimization vol. 1: Unconstrained Optimization, John Wiley and Sons, New York, 1987.
[16] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149-154.
[17] J. C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal of Optimization, 2 (1992), 21-42.
[18] W. W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16, 1 (2003), 170-192.
[19] W. W. Hager, H. Zhang, CG-DESCENT, a conjugate gradient method with guaranteed descent, ACM Transactions on Mathematical Software, 32, 1 (2006), 113-137.
[20] W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific journal of Optimization, 2 (2006), 35-58.
[21] M. R. Hestenes, E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409-436.
[22] Y. F. Hu and C. Storey, Global convergence result for conjugate gradient methods, J. Optim. Theory Appl., 71 (1991), 399-405.
[23] J.K. Liu, S.J. Li, New hybrid conjugate gradient method for unconstrained optimization, Applied Mathematics and Computation, 245 (2014), 36-43.
[24] G. H. Liu, J. Y. Han and H. X. Yin, Global convergence of the Fletcher-Reeves algorithm with an inexact line search, Appl. Math. J. Chinese Univ. Ser. B, 10 (1995), 75-82.
[25] Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory, JOTA, 69 (1991), 129-137.
[26] J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 1999.
[27] E. Polak, G. Ribiére, Note sur la convergence de méthodes de directions conjugués, Revue Française d'Informatique et de Recherche Opérationnelle, 16 (1969), 35-43.
[28] B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), 94-112.
[29] M. J. D. Powell, Nonconvex minimization calculations and the conjugate gradient method, in D.F. Griffiths, ed., Numerical Analysis Lecture Notes in Mathematics 1066 (Springer-Verlag, Berlin, 1984), 122-141.
[30] M. J. D. Powell, Restart procedures of the conjugate gradient method, Mathematical Programming, 2 (1977), 241-254.
[31] D. Touati-Ahmed, C. Storey, Efficient hybrid conjugate gradient techniques, J. Optim. Theory Appl., 64 (1990), 379-397.
[32] X. Yang, Z. Luo, X. Dai, A Global Convergence of LS-CD Hybrid Conjugate Gradient Method, Advances in Numerical Analysis, 2013 (2013), Article ID 517452, 5 pages.
[33] Y. Yuan, J. Stoer, A subspace study on conjugate gradient algorithm, Z. Angew. Math. Mech. 75 (1995), 69-77.
[34] P. Wolfe, Convergence conditions for ascent methods, SIAM Review, 11 (1969), 226-235.
[35] P. Wolfe, Convergence conditions for ascent methods. II: Some corrections, SIAM Review, 11 (1969), 226-235.
[36] G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear Programming, J. Abadie, ed., North-Holland, Amsterdam, (1970), 37-86.