magazinelogo

OAJRC Environmental Science

Downloads: 14227 Total View: 140901
Frequency: Instant publication ISSN Online: 2632-2331 CODEN: OESAA2
Email: oajrces@hillpublish.com

Volumes & Issues

Current Issue

Article http://dx.doi.org/10.26855/oajrces.2022.12.002

The Main Natural Sources of Global Climate Variability Occurring Even before the Industrial Era

Desta Abayechaw

Department of Agronomy, Wondo Genet Agricultural Research Center, Ethiopia Institute of Agricultural Research, Ethiopia.

*Corresponding author: Desta Abayechaw

Published: January 14,2023

Abstract

Natural global climate variability and fluctuations are characteristic of the global climate and occur on both long- and short-time scales as common phenomena. Therefore, natural influences on the global climate variability even before the industrial era may include changes in solar energy, naturally occurring water vapor and CO2 in the atmosphere, volcanic aerosol and GHG emissions, and cyclical oscillations in the oceans. However, natural variability and weather extremes, in particular local warming, influences people’s belief in climate change and their willingness to support potentially costly climate mitigation measures. Among natural sources of global climate variability, Volcanism has been a major driver of past climate variability by reflecting the incoming sunlight away from the Earth’s surface. According to this review paper, man-made climate variability in addition to natural global climate variability increase climate change from the global to the local level in below thirty years.

References

[1] IPCC [Intergovernmental Panel on Climate Change]. (2013a). Climate Change 2013: The Physical Science Basis (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change), (ed.) T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley; Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535 p. doi:10.1017/CBO9781107415324.

[2] Rohli & Vega 2018, p. 274.

[3] CRS. (2018). Evolving Assessments of Human and Natural Contributions to Climate Change. Congressional Research Service 7-.... www.crs.gov R45086.

[4] Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C. Y. & Leiserowitz, A. Global perceptions of local temperature change. Nature Clim. Change 3, 352–356 (2012). 

[5] Deryugina, T. (2013). The effects of local weather fluctuations on beliefs about global warming. Climatic Change 118, 397–416 (2013). 

[6] Egan, P. J. & Mullin, M. (2012). Turning personal experience into political attitudes: The effect of local weather on Americans’ per-ceptions about global warming. J. Pol. 74, 796–809. 

[7] Christiansen, B., Schmith, T. & Thejll, P. A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness. J. Climate 22, 951–976 (2009). 

[8] Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Clim. Change 2, 775–779 (2012).

[9] Barrio Pedro, D., Fischer, E. Lautenbacher, J., Trigo, R.M. & García-Herrera, R. (2011). Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

[10] Ahmed, M. (2013). Continental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346.

[11] Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, et al. Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, and New York: Cambridge University Press; 2007. 8.

[12] Robock A. The Mount St. Helens volcanic eruption of 18 May 1980: minimal climatic effect. Science 1981, 212:1383–1384. 

[13] Mather TA, Allen AG, Davison BM, Pyle DM, Oppenheimer C, Mc Gonigle AJS. Nitric acid from volcanoes. Earth Planet Sci Lett 2004, 218:17–30. 

[14] von Glasow R, Bobrowski N, Kern C. The effects of volcanic eruptions on atmospheric chemistry. Chem Geol 2009, 263:131–142.

[15] Bluth GJS, Dorion SD, Schnitzler SC, Kreger AJ, Walter LS. Gobal tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys Res Lett 1992, 19:151–154.

[16] Schurer, A.P., Tett, S.F.B. & Hegerl, G.C. Small influence of solar variability on climate over the past millennium. Nat.Geosci.7, 104–108(2014).

[17] Parker, D.E. & Brownscombe, J.L. (1983). Stratospheric warming following the ElChichónvolcaniceruption. Nature 301, 406–408. 

[18] Iles, C.E. & Hegerl, G.C. (2015). Systematic change in global patterns of streamflow following volcanic eruptions. Nat.Geosci. 8, 838–842. 

[19] Liu, F (2016). Global monsoon precipitation response to large volcanic eruptions. Sci. Rep. 6, 24331.

[20] Crowley TJ. Causes of climate change over the past 1000 years. Science 2000, 289:270–277.

[21] Shindell DT, Schmidt GA, Miller RL, Mann ME. Volcanic and solar forcing of climate change during the preindustrial era. J Clim 2003, 16:4094–4107.

[22] Delworth T Land K nutson T R. (2000). Simulation of early 20th century global warming Science 2872246–50.

[23] Poli Petal 2016 ERA-20C: an atmospheric reanalysis of the twentieth century J. Clim. 294083–97.

[24] WCRP. June 2018. Climate and Ocean – Variability, Predictability, and Change. Science Plan and Implementation Strategy. WCRP Publication No.: 14/2018.

[25] Walsh JE, Fetterer F, Stewart JS and Chapman WL. (2017). A database ford epicting Arctic seaice variations back to1850 Geogr.Rev. 10789–107.

[26] Mueller BL, Gillett NP, Monahan AH, Zwiers FW, Mueller BL, Gillett NP, Monahan AH and Z wiers FW. (2018). Attribution of Arctic Sea Ice Decline from 1953 to 2012 to Influences from natural, greenhouse gas, and anthropogenic aerosol forcing.Clim.317771–87 .

[27] Notz D and Stroeve J. (2016). Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission Science354747–50.

[28] DayJJ, Hargreaves JC, Annan JD, and Abe-Ouchi A. (2012). Sources of multi-decadal variability in Arctic Sea ice extent Environ. Res. Lett.7034011. 

[29] García‐Herrera R, Barrio Pedro D, Gallego D, Mellado‐CanoJ, Wheeler D and Wilkinson C. (2018). Understanding weather and climate of the last 300 years from ships ’log books Wiley Interdiscip.Rev. Clim.Change9e544.

[30] Williams, Jack (20 December 2005). "Earth's tilt creates seasons". USAToday. Retrieved 17 March 2007.

[31] Sami K. Solanki, Natalie A. Krivova, and Joanna D. Haigh. (2013). Solar Irradiance Variability and Climate. nnu. Rev. Astro. Astro-phys. 2013.51:311-351. Downloaded from www.annual reviews.org by WIB6417 - Max-Planck-Gesellschaft on 11/15/13. For per-sonal use only.

[32] Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al. eds. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge Univ. Press.

[33] Bush, E., Gillett, N., Watson, E., Fyfe, J., Vogel, F. and Swart, N. (2019). Understanding Observed Global Climate Change; Chapter 2 in Canada’s Changing Climate Report, (ed.) E. Bush and D.S. Lemmen; Government of Canada, Ottawa, Ontario, p. 24–72.

[34] Shabbar, A., and Yu, B. (2012). Intraseasonal Canadian winter temperature responses to interannual and interdecadal Pacific SST modulations. Atmosphere-Ocean, v. 50, p. 109–121. doi:10.1080/07055900.2012.657 154.

[35] Salinger, M.J., Renwick, J.A. and Mullan, A.B. (2001). Interdecadal Pacific Oscillation and South Pacific Climate; International Journal of Climatology, v. 21, p. 1705–1721.

[36] Bradley, R.S. (1999). Paleoclimatology, reconstructing climates of the Quaternary. In: International Geophysics Series, vol. 64, Aca-demic Press, San Diego, 613p.

[37] Alverson, K.D., Bradley, R.S. and Pedersen Th.F., (eds), (2003). Paleoclimates, Global Change, and the Future. The IGBP Series, PAGES, Springer, Berlin, 221p.

[38] Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V.Y., Lorius, C., P´epin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from Vostok ice core, Antarctica. Nature, 399(6735), 429-436.

[39] Hostetler, S.W., Mix, A.C. (1999). Reassessment of ice-age cooling of the Tropical Ocean and atmosphere. Nature, 399(6737), pp. 673-676. 

[40] Schneider, R.R., Bard, E., and Mix, A.C. (2000). Last ice age global ocean and land surface temperatures: the EPILOG initiative. Global Change Newsletter, 43, pp. 4-7. (first published in Pages Newsletter, June 2000).

[41] Bard, E. (2002). Climate shock: abrupt changes over Millennial Time Scales. Physics Today, 55(12), 32-38. ERCA 6 29.

[42] Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidborg, C.S., Steffensen, J.P., Sveinbj¨ornsdottir, A.E., Jouzel, J. and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218-220. 

[43] Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365(6442), 143-147. 

[44] Ganopolski, A., and Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409(6817), 153-158. 

[45] Goosse, H., Renssen, H., Selten, F.M., Haarsma, R.J., and Opsteegh, J.D. (2002). Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophysical.

[46] Lohmann, G. and Schulz, M. (2000). Reconciling B¨olling warmth with peak deglacial meltwater discharge. Paleoceanography, 15(5), 537-540. 

[47] Stocker, T.F. (1998). The seesaw effects. Science, 282, 61-62. 

[48] Crucifix, M., and Berger, A. (2002). Simulation of ocean-ice sheets interactions during the deglaciation. Paleoceanography, 17(4), DOI: 10.1029/2001PA000702. 

[49] Crucifix, M., Tulkens, Ph., and Berger, A. (2001). Modeling abrupt climate change during the last glaciation. In Seidov, D., Haupt, B.J. and Maslin, M. (eds). The Oceans and Rapid Climate Change: Past, Present, and Future. Geophysical Monograph 126, American Geophysical Union, pp. 117-134. 

[50] Heinrich, H. (1988). Origin and consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean during the Past 130,000 years. Quaternary Research, 29, 142-152.

[51] McIntyre, A., and Molfino, B. (1996). Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science, 274(5294), 1867-1870.

How to cite this paper

The Main Natural Sources of Global Climate Variability Occurring Even before the Industrial Era

How to cite this paper: Desta Abayechaw. (2022) The Main Natural Sources of Global Climate Variability Occurring Even before the Industrial Era. OAJRC Environmental Science3(1), 10-22.

DOI: https://dx.doi.org/10.26855/oajrces.2022.12.002