References
[1] IPCC [Intergovernmental Panel on Climate Change]. (2013a). Climate Change 2013: The Physical Science Basis (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change), (ed.) T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley; Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535 p. doi:10.1017/CBO9781107415324.
[2] Rohli & Vega 2018, p. 274.
[3] CRS. (2018). Evolving Assessments of Human and Natural Contributions to Climate Change. Congressional Research Service 7-.... www.crs.gov R45086.
[4] Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C. Y. & Leiserowitz, A. Global perceptions of local temperature change. Nature Clim. Change 3, 352–356 (2012).
[5] Deryugina, T. (2013). The effects of local weather fluctuations on beliefs about global warming. Climatic Change 118, 397–416 (2013).
[6] Egan, P. J. & Mullin, M. (2012). Turning personal experience into political attitudes: The effect of local weather on Americans’ per-ceptions about global warming. J. Pol. 74, 796–809.
[7] Christiansen, B., Schmith, T. & Thejll, P. A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness. J. Climate 22, 951–976 (2009).
[8] Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Clim. Change 2, 775–779 (2012).
[9] Barrio Pedro, D., Fischer, E. Lautenbacher, J., Trigo, R.M. & García-Herrera, R. (2011). Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).
[10] Ahmed, M. (2013). Continental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346.
[11] Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, et al. Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, and New York: Cambridge University Press; 2007. 8.
[12] Robock A. The Mount St. Helens volcanic eruption of 18 May 1980: minimal climatic effect. Science 1981, 212:1383–1384.
[13] Mather TA, Allen AG, Davison BM, Pyle DM, Oppenheimer C, Mc Gonigle AJS. Nitric acid from volcanoes. Earth Planet Sci Lett 2004, 218:17–30.
[14] von Glasow R, Bobrowski N, Kern C. The effects of volcanic eruptions on atmospheric chemistry. Chem Geol 2009, 263:131–142.
[15] Bluth GJS, Dorion SD, Schnitzler SC, Kreger AJ, Walter LS. Gobal tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys Res Lett 1992, 19:151–154.
[16] Schurer, A.P., Tett, S.F.B. & Hegerl, G.C. Small influence of solar variability on climate over the past millennium. Nat.Geosci.7, 104–108(2014).
[17] Parker, D.E. & Brownscombe, J.L. (1983). Stratospheric warming following the ElChichónvolcaniceruption. Nature 301, 406–408.
[18] Iles, C.E. & Hegerl, G.C. (2015). Systematic change in global patterns of streamflow following volcanic eruptions. Nat.Geosci. 8, 838–842.
[19] Liu, F (2016). Global monsoon precipitation response to large volcanic eruptions. Sci. Rep. 6, 24331.
[20] Crowley TJ. Causes of climate change over the past 1000 years. Science 2000, 289:270–277.
[21] Shindell DT, Schmidt GA, Miller RL, Mann ME. Volcanic and solar forcing of climate change during the preindustrial era. J Clim 2003, 16:4094–4107.
[22] Delworth T Land K nutson T R. (2000). Simulation of early 20th century global warming Science 2872246–50.
[23] Poli Petal 2016 ERA-20C: an atmospheric reanalysis of the twentieth century J. Clim. 294083–97.
[24] WCRP. June 2018. Climate and Ocean – Variability, Predictability, and Change. Science Plan and Implementation Strategy. WCRP Publication No.: 14/2018.
[25] Walsh JE, Fetterer F, Stewart JS and Chapman WL. (2017). A database ford epicting Arctic seaice variations back to1850 Geogr.Rev. 10789–107.
[26] Mueller BL, Gillett NP, Monahan AH, Zwiers FW, Mueller BL, Gillett NP, Monahan AH and Z wiers FW. (2018). Attribution of Arctic Sea Ice Decline from 1953 to 2012 to Influences from natural, greenhouse gas, and anthropogenic aerosol forcing.Clim.317771–87 .
[27] Notz D and Stroeve J. (2016). Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission Science354747–50.
[28] DayJJ, Hargreaves JC, Annan JD, and Abe-Ouchi A. (2012). Sources of multi-decadal variability in Arctic Sea ice extent Environ. Res. Lett.7034011.
[29] García‐Herrera R, Barrio Pedro D, Gallego D, Mellado‐CanoJ, Wheeler D and Wilkinson C. (2018). Understanding weather and climate of the last 300 years from ships ’log books Wiley Interdiscip.Rev. Clim.Change9e544.
[30] Williams, Jack (20 December 2005). "Earth's tilt creates seasons". USAToday. Retrieved 17 March 2007.
[31] Sami K. Solanki, Natalie A. Krivova, and Joanna D. Haigh. (2013). Solar Irradiance Variability and Climate. nnu. Rev. Astro. Astro-phys. 2013.51:311-351. Downloaded from www.annual reviews.org by WIB6417 - Max-Planck-Gesellschaft on 11/15/13. For per-sonal use only.
[32] Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al. eds. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge Univ. Press.
[33] Bush, E., Gillett, N., Watson, E., Fyfe, J., Vogel, F. and Swart, N. (2019). Understanding Observed Global Climate Change; Chapter 2 in Canada’s Changing Climate Report, (ed.) E. Bush and D.S. Lemmen; Government of Canada, Ottawa, Ontario, p. 24–72.
[34] Shabbar, A., and Yu, B. (2012). Intraseasonal Canadian winter temperature responses to interannual and interdecadal Pacific SST modulations. Atmosphere-Ocean, v. 50, p. 109–121. doi:10.1080/07055900.2012.657 154.
[35] Salinger, M.J., Renwick, J.A. and Mullan, A.B. (2001). Interdecadal Pacific Oscillation and South Pacific Climate; International Journal of Climatology, v. 21, p. 1705–1721.
[36] Bradley, R.S. (1999). Paleoclimatology, reconstructing climates of the Quaternary. In: International Geophysics Series, vol. 64, Aca-demic Press, San Diego, 613p.
[37] Alverson, K.D., Bradley, R.S. and Pedersen Th.F., (eds), (2003). Paleoclimates, Global Change, and the Future. The IGBP Series, PAGES, Springer, Berlin, 221p.
[38] Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V.Y., Lorius, C., P´epin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from Vostok ice core, Antarctica. Nature, 399(6735), 429-436.
[39] Hostetler, S.W., Mix, A.C. (1999). Reassessment of ice-age cooling of the Tropical Ocean and atmosphere. Nature, 399(6737), pp. 673-676.
[40] Schneider, R.R., Bard, E., and Mix, A.C. (2000). Last ice age global ocean and land surface temperatures: the EPILOG initiative. Global Change Newsletter, 43, pp. 4-7. (first published in Pages Newsletter, June 2000).
[41] Bard, E. (2002). Climate shock: abrupt changes over Millennial Time Scales. Physics Today, 55(12), 32-38. ERCA 6 29.
[42] Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidborg, C.S., Steffensen, J.P., Sveinbj¨ornsdottir, A.E., Jouzel, J. and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218-220.
[43] Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365(6442), 143-147.
[44] Ganopolski, A., and Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409(6817), 153-158.
[45] Goosse, H., Renssen, H., Selten, F.M., Haarsma, R.J., and Opsteegh, J.D. (2002). Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophysical.
[46] Lohmann, G. and Schulz, M. (2000). Reconciling B¨olling warmth with peak deglacial meltwater discharge. Paleoceanography, 15(5), 537-540.
[47] Stocker, T.F. (1998). The seesaw effects. Science, 282, 61-62.
[48] Crucifix, M., and Berger, A. (2002). Simulation of ocean-ice sheets interactions during the deglaciation. Paleoceanography, 17(4), DOI: 10.1029/2001PA000702.
[49] Crucifix, M., Tulkens, Ph., and Berger, A. (2001). Modeling abrupt climate change during the last glaciation. In Seidov, D., Haupt, B.J. and Maslin, M. (eds). The Oceans and Rapid Climate Change: Past, Present, and Future. Geophysical Monograph 126, American Geophysical Union, pp. 117-134.
[50] Heinrich, H. (1988). Origin and consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean during the Past 130,000 years. Quaternary Research, 29, 142-152.
[51] McIntyre, A., and Molfino, B. (1996). Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science, 274(5294), 1867-1870.