References
[1] Prasana, B., Joseph, E., Huesing, E., Regina, E., Virginia, M., Peschke, E. (2018). Fall Armyworm in Africa: A Guide for Integrated Pest Management. CIMMYT, Ciudad de México.
[2] Sarkar, S., Dias, J., Gil, B.J., Keeley, J., Möhring, N., Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. Available online: https://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53- 11ebaeb5-01aa75ed71a1/language-en (accessed on 10 July 2022).
[3] Rwomushana, I., Bateman, M., Beale, T., Beseh, P., Cameron, K., Chiluba, M., Clottey, V., Davis, T., Day, R., Early, R., Godwin, J., Gonzalez-Moreno, P., Kansiime, M., Kenis, M., Makale, F., Mugambi, I., Murphy, S., Nunda. W., Phiri, N., Pratt, C., Tambo, J. (2018). Fall armyworm: impacts and implications for Africa. Evidence Note Update, (October 2018) CAB International, Walling ford, UK.
[4] Timilsena, B. P., Niassy, S., Kimathi, E., Abdel Rahman, E.M., Seidl Adams, I., Wamalwa, M., Tonnang, H. E. Z., Ekesi, S., Hughes, D. P., Rajotte, E. G., Subramanian, S. (2022). Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns Scientific Reports | (2022) 12:539 https://doi.org/10.1038/s41598-021-04369-3.
[5] Anjorin, F. B., Odeyemi, O. O., Akinbode, O. A., Kareem, K. T. (2022). Fall armyworm (Spodoptera frugiperda) (J. E. Smith) (Lepidoptera: Noctuidae) infestation: maize yield depression and physiological basis of tolerance. Journal of Plant Protection Research, 62(1), pp.12-21. https://doi.org/10.24425/jppr.2022.140294.
[6] Assefa, F., Ayalew, D. (2019). Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food & Agriculture. 5. 10.1080/23311932.2019.1641902.
[7] Abro, Z., Kimathi, E., De Groote, H., Tefera, T, Sevgan, S., Niassy, S., Kassie, M. (2021). Socioeconomic and health impacts of fall armyworm in Ethiopia. PLoS ONE 16(11): e0257736. Doi: 10.1371/journal.pone.0257736.
[8] De Groote, H., Kimenju, S., Munyua, B., Palmas, S., Kassie, M., Bruce, A. (2020). Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agriculture Ecosystems & Environment. 292. 10.1016/j.agee.2019.106804.
[9] Kabwe, S., Chengo-Chabwela, C., K. Mulenga. (2018). Fall armyworm outbreak in Zambia: Responses, Impact in Maize Production and Food Security. IAPRI Technical Paper No. 6, 26p.
[10] Chilufya, W. (2017). Fall armyworm maize attack: a case for diversity from farm to fork. Hivos/IIED Sustainable diets for All project. Accessed on 8th December on Http: www.iied.org.
[11] Otim, M.H., Kouma, K., Flaboe, M., Akello, J., Mudde, B., Obonyom, A.T., Bruce, A.Y., Opio, W.A., Chinwada, P., Hailu, G., Paparu, P. (2021). Managing a Transboundary Pest: The fall armyworm on Maize in Africa. In Shields VDC (ed) Moths and Caterpillars. Inte-chOpen 110p.
[12] Chaud, M., Souto, E.B., Zielinska, A., Severino, P., Batain, F., Oliveira-Junior, J., Alves, T. (2021). Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics, 9(6), 131. https://doi.org/ 10.3390 /toxics9060131.
[13] Chirinos, D.T., Castro, R., Cun, J., Castro, J., Peñarrieta, S., Solis, L., Geraud, F. (2020). Insecticides and agricultural pest control: the magnitude of its use in crops in some provinces of Ecuador. Ciencia y Tecnología Agropecuaria, 21(1), e1276.
[14] Mdeni, N.L., Adeniji, A.O., Okoh, A.I., Okoh, O.O. (2022). Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review. Molecules 2022, 27, 618. https://doi.org/10.3390/ molecules 27030618.
[15] Stevenson, P.C., Belmain, S. (2016). Pesticidal Plants in African Agriculture: Local Uses and Global Perspectives. Outlooks on Pest Management. 27. 226-230. 10.1564/v27_oct_10.
[16] Ngegba, P.M., Cui, G., Khalid, M.Z. and Zhong, G. (2022). Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12,600.https://doi.org/10.3390/agriculture12050600.
[17] FAO. (2018). Integrated management of Fall armyworm on maize: A guide for farmer field schools in Africa.
[18] Mboussi S.B., Zachée Ambang, Z., Kakam, S., Beilhe, L. B. (2018). Control of cocoa mirids using aqueous extracts of Thevetia peruviana and Azadirachta indica Cogent Food & Agriculture 4: 1430470. https://doi.org/10.1080/23311932.2018.1430470.
[19] Coulibaly, O., Mbila, D., Sonwa, D. J., Adesina, A., Bakala, J. (2002). Responding to economic crisis in Sub-Saharan Africa: New Farmer-developed pest management strategies in cocoa-based plantations in Southern Cameroon. Integrated Pest Management Reviews, 7, 165–172. https://doi.org/10.1023/B:IPMR. 0000027500.24459.fe.
[20] Mugisha-kamatenesi M., Deng, A. L., Ogendo, J.O., Omolo, E. O., Mihale, M. J., Otim, M., Buyungo, J. P., Brett, P.K. (2008). Indigenous knowledge of field insect pests and their management around Lake Victoria basin in Uganda. African Journal of Environmental Science and Technology Vol. 2 (8). pp. 342-348, Available online at http://www.academicjournals.org/AJest.
[21] Obongoya, B.O., Wagai, S.O., Odhiambo, G. (2010). Phytotoxic effect of selected crude plant extracts on soil-borne fungi of common bean. African Crop Science Journal, Vol. 18, No. 1, pp. 15-22.
[22] Thembo, K.M, Vismer, H.F., N.Z. Nyazema, N.Z., Gelderblom, W.C.A., Katerere, D.R. (2010). Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. Journal of Applied Microbiology109(2010) 1479–14861479.
[23] Phambala, K., Tembo, Y., Kasambala, T., Kabambe, V.H., Stevenson, P.C., Belmain, S.R. (2020). Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (Spodoptera frugiperda). Plants 2020, 9, 112. https://doi.org/10.3390/plants9010112.
[24] Siazemo, M.K., Simfukwe, P. (2020). An Evaluation of the Efficacy of Botanical Pesticides for Fall Armyworm Control in Maize Production Open Access Library Journal, Vol.7 No.9.
[25] Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., Mendesil, E. (2019). The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, Spodoptera frugiperda, in Maize. Insects. 10(2):45. doi: 10.3390/insects10020045. PMID: 30717302; PMCID: PMC6410260.
[26] Carvalho, R.D., da Silva, M. A., Borges, M.T. M. R., Forti, V. A. (2022). Plant extracts in agriculture and their applications in the treatment of seeds. Ciência Rural, v.52:5, e20210245. https://doi.org/10.1590/0103-8478cr20210245.
[27] Tembo, Y., Mkindi, A.G., Mkenda, P.A., Mpumi, N., Mwanauta, R., Stevenson, P.C., Ndakidemi, P.A, Belmain, S.R. (2018). Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Front. Plant Sci. 9:1425. Doi: 10.3389/fpls.2018.01425.
[28] Abbot, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association vol.3, no.2. https://www.biodiversitylibrary.org/ content/part /JAMC /JAMCA_V03_N2_P302-303.pdf Accessed 18 July 2022.
[29] Davis, F.M., Ng, S.S., Williams, W.P. (1992). Visual rating scales for screening whorl-stage corn for resistance to fall armyworm. Technical Bulletin 186; Mississippi Agricultural and Forestry Research Experiment Station: Mississippi State University, MS, USA. http:// www. nal. usda. gov/. Accessed on 12 July 2022.
[30] Dong, C., Wu, Y., Gao, J., Zhou, Z., Mu, C., Ma, P., Chen, J., Wu, J. (2018). Field Inoculation and Classification of Maize Ear Rot Caused by Fusarium verticillioides. Bio Protoc. 2018 Dec 5;8(23): e3099. doi: 10.21769/BioProtoc.3099. PMID: 34532546; PMCID: PMC8342132.
[31] Tandzi, L. N., Mutengwa, C.S. (2020). Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy 2020, 10, 29. https://doi.org/10.3390/agronomy10010029.
[32] VSN International. (2010). Genstat for Windows 13th Edition. VSN International, Hemel Hempstead, UK. Web page: Genstat.co.uk.
[33] Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), 67–72. https://doi. org/ 10.4103 /aca. ACA_157_18.
[34] Midway, S., Robertson, M., Flinn, S., Kaller M. 2020. Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test. PeerJ 8: e10387 http://doi.org/10.7717/peerj.10387.
[35] Pannuti, L.E.R., Baldin, E.L.L., Hunt, T.E., Paula-Moraes, S.V. (2016). On-Plant Larval Movement and Feeding Behavior of Fall Armyworm (Lepidoptera: Noctuidae) on Reproductive Corn Stages, Environmental Entomology, Volume 45, Issue 1, February 2016, Pages 192–200, https://doi.org/10.1093/ee/nvv159.
[36] Nboyine, J., Asamani, E., Agboyi, L., Yahaya, I., Kusi, F., Adazebra, G., Benjamin, B. (2022). Assessment of the optimal frequency of insecticide sprays required to manage fall armyworm (Spodoptera frugiperda J.E Smith) in maize (Zea mays L.) in northern Ghana. (2022). CABI Agric Biosci 3, 3 (2022). https://doi.org/10.1186/s43170-021-00070-.
[37] FAO. (2017). FAO Advisory Note on Fall Armyworm (FAW) in Africa. http://www.fao.org/3/a-bs914e.pdf.