Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / Advance in Biological Research /


Bio-efficacy of Crude Aqueous Leaf Extracts against the Fall Armyworm (Spodoptera frugiperda) and Maize Ear Rots in Zambia

Date: November 8,2022 |Hits: 2278 Download PDF How to cite this paper

Mweshi Mukanga1,*, Owen Machuku1, Gilson Chipabika1,2, Matthews Matimelo1, Kelvin Mumba3, Gilson Chipabika1,2, Ndalamei Demaino Mabote1, Vincent Simwinga1, Isaiah Nthenga1, Marian Lupulula1, Sylvia Misengo Tembo1, Kabosha Lwinya1

1Mount Makulu Research Station, Zambia Agriculture Research Institute, Chilanga, Zambia.

2Department of Plant Science, School of Agricultural Sciences, University of Zambia, Zambia.

3Mochipapa Research Station, Zambia Agriculture Research Institute, Chilanga, Zambia.

*Corresponding author: Mweshi Mukanga


The use of crude aqueous leaf extracts (=plant extracts) provides an excellent opportunity to explore their potential as an alternative control method to chemical insecticides. Following the invasion of Zambia by Fall armyworm, Spodoptera frugiperda (FAW), huge amounts of chemical pesticides have been procured and applied to control the pest, potentially creating an environmental health hazard. This study was therefore conducted to assess the bio-efficacy of crude aqueous leaf extracts of selected plants against FAW and maize ear rots. A no-choice bioassay set up prior to a field trial revealed that extracts of Azadirachta indica, Gliricidia sepium, Nicotiana tabacum, Ricinus communis, and Tephrosia vogelii applied rate of 10% weight by volume exerted more than 40% FAW larvae mortality. These extracts when tested in a field experiment over two seasons, 2020 and 2021 with two checks, chemical insecticide, Lambda-cyhalothrin 5EC and untreated control significantly reduced FAW infestation by 21.7 to 33.3%, had low number of larvae per plant, and less leaf damage compared to the untreated control, though significantly higher than that insecticide control. It was further observed that more than two sprays were required to effectively control the pest. At harvest, there were significantly less incidence and severity of maize ear rot, low levels of cob damage and higher grain yield in leaf extract treatments than the unprotected maize. Overall, R. communis followed by A. indica and N. tabacum were most effective in reducing FAW attack and maize ear rot infection. Given their effectiveness, it is imperative these extracts are included in an Integrated Pest Management Program for FAW.


[1] Prasana, B., Joseph, E., Huesing, E., Regina, E., Virginia, M., Peschke, E. (2018). Fall Armyworm in Africa: A Guide for Integrated Pest Management. CIMMYT, Ciudad de México.

[2] Sarkar, S., Dias, J., Gil, B.J., Keeley, J., Möhring, N., Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. Available online: https://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53- 11ebaeb5-01aa75ed71a1/language-en (accessed on 10 July 2022).

[3] Rwomushana, I., Bateman, M., Beale, T., Beseh, P., Cameron, K., Chiluba, M., Clottey, V., Davis, T., Day, R., Early, R., Godwin, J., Gonzalez-Moreno, P., Kansiime, M., Kenis, M., Makale, F., Mugambi, I., Murphy, S., Nunda. W., Phiri, N., Pratt, C., Tambo, J. (2018). Fall armyworm: impacts and implications for Africa. Evidence Note Update, (October 2018) CAB International, Walling ford, UK.

[4] Timilsena, B. P., Niassy, S., Kimathi, E., Abdel Rahman, E.M., Seidl Adams, I., Wamalwa, M., Tonnang, H. E. Z., Ekesi, S., Hughes, D. P., Rajotte, E. G., Subramanian, S. (2022). Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns Scientific Reports | (2022) 12:539 https://doi.org/10.1038/s41598-021-04369-3.

[5] Anjorin, F. B., Odeyemi, O. O., Akinbode, O. A., Kareem, K. T. (2022). Fall armyworm (Spodoptera frugiperda) (J. E. Smith) (Lepidoptera: Noctuidae) infestation: maize yield depression and physiological basis of tolerance. Journal of Plant Protection Research, 62(1), pp.12-21. https://doi.org/10.24425/jppr.2022.140294. 

[6] Assefa, F., Ayalew, D. (2019). Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food & Agriculture. 5. 10.1080/23311932.2019.1641902.

[7] Abro, Z., Kimathi, E., De Groote, H., Tefera, T, Sevgan, S., Niassy, S., Kassie, M. (2021). Socioeconomic and health impacts of fall armyworm in Ethiopia. PLoS ONE 16(11): e0257736. Doi: 10.1371/journal.pone.0257736.

[8] De Groote, H., Kimenju, S., Munyua, B., Palmas, S., Kassie, M., Bruce, A. (2020). Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agriculture Ecosystems & Environment. 292. 10.1016/j.agee.2019.106804.

[9] Kabwe, S., Chengo-Chabwela, C., K. Mulenga. (2018). Fall armyworm outbreak in Zambia: Responses, Impact in Maize Production and Food Security. IAPRI Technical Paper No. 6, 26p. 

[10] Chilufya, W. (2017). Fall armyworm maize attack: a case for diversity from farm to fork. Hivos/IIED Sustainable diets for All project. Accessed on 8th December on Http: www.iied.org.

[11] Otim, M.H., Kouma, K., Flaboe, M., Akello, J., Mudde, B., Obonyom, A.T., Bruce, A.Y., Opio, W.A., Chinwada, P., Hailu, G., Paparu, P. (2021). Managing a Transboundary Pest: The fall armyworm on Maize in Africa. In Shields VDC (ed) Moths and Caterpillars. Inte-chOpen 110p.

[12] Chaud, M., Souto, E.B., Zielinska, A., Severino, P., Batain, F., Oliveira-Junior, J., Alves, T. (2021). Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics, 9(6), 131. https://doi.org/ 10.3390 /toxics9060131.

[13] Chirinos, D.T., Castro, R., Cun, J., Castro, J., Peñarrieta, S., Solis, L., Geraud, F. (2020). Insecticides and agricultural pest control: the magnitude of its use in crops in some provinces of Ecuador. Ciencia y Tecnología Agropecuaria, 21(1), e1276.

[14] Mdeni, N.L., Adeniji, A.O., Okoh, A.I., Okoh, O.O. (2022). Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review. Molecules 2022, 27, 618. https://doi.org/10.3390/ molecules 27030618.

[15] Stevenson, P.C., Belmain, S. (2016). Pesticidal Plants in African Agriculture: Local Uses and Global Perspectives. Outlooks on Pest Management. 27. 226-230. 10.1564/v27_oct_10. 

[16] Ngegba, P.M., Cui, G., Khalid, M.Z. and Zhong, G. (2022). Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12,600.https://doi.org/10.3390/agriculture12050600.

[17] FAO. (2018). Integrated management of Fall armyworm on maize: A guide for farmer field schools in Africa.

[18] Mboussi S.B., Zachée Ambang, Z., Kakam, S., Beilhe, L. B. (2018). Control of cocoa mirids using aqueous extracts of Thevetia peruviana and Azadirachta indica Cogent Food & Agriculture 4: 1430470. https://doi.org/10.1080/23311932.2018.1430470. 

[19] Coulibaly, O., Mbila, D., Sonwa, D. J., Adesina, A., Bakala, J. (2002). Responding to economic crisis in Sub-Saharan Africa: New Farmer-developed pest management strategies in cocoa-based plantations in Southern Cameroon. Integrated Pest Management Reviews, 7, 165–172. https://doi.org/10.1023/B:IPMR. 0000027500.24459.fe.

[20] Mugisha-kamatenesi M., Deng, A. L., Ogendo, J.O., Omolo, E. O., Mihale, M. J., Otim, M., Buyungo, J. P., Brett, P.K. (2008). Indigenous knowledge of field insect pests and their management around Lake Victoria basin in Uganda. African Journal of Environmental Science and Technology Vol. 2 (8). pp. 342-348, Available online at http://www.academicjournals.org/AJest. 

[21] Obongoya, B.O., Wagai, S.O., Odhiambo, G. (2010). Phytotoxic effect of selected crude plant extracts on soil-borne fungi of common bean. African Crop Science Journal, Vol. 18, No. 1, pp. 15-22.

[22] Thembo, K.M, Vismer, H.F., N.Z. Nyazema, N.Z., Gelderblom, W.C.A., Katerere, D.R. (2010). Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. Journal of Applied Microbiology109(2010) 1479–14861479.

[23] Phambala, K., Tembo, Y., Kasambala, T., Kabambe, V.H., Stevenson, P.C., Belmain, S.R. (2020). Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (Spodoptera frugiperda). Plants 2020, 9, 112. https://doi.org/10.3390/plants9010112.

[24] Siazemo, M.K., Simfukwe, P. (2020). An Evaluation of the Efficacy of Botanical Pesticides for Fall Armyworm Control in Maize Production Open Access Library Journal, Vol.7 No.9.

[25] Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., Mendesil, E. (2019). The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, Spodoptera frugiperda, in Maize. Insects. 10(2):45. doi: 10.3390/insects10020045. PMID: 30717302; PMCID: PMC6410260.

[26] Carvalho, R.D., da Silva, M. A., Borges, M.T. M. R., Forti, V. A. (2022). Plant extracts in agriculture and their applications in the treatment of seeds. Ciência Rural, v.52:5, e20210245. https://doi.org/10.1590/0103-8478cr20210245.

[27] Tembo, Y., Mkindi, A.G., Mkenda, P.A., Mpumi, N., Mwanauta, R., Stevenson, P.C., Ndakidemi, P.A, Belmain, S.R. (2018). Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Front. Plant Sci. 9:1425. Doi: 10.3389/fpls.2018.01425.

[28] Abbot, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association vol.3, no.2. https://www.biodiversitylibrary.org/ content/part /JAMC /JAMCA_V03_N2_P302-303.pdf Accessed 18 July 2022.

[29] Davis, F.M., Ng, S.S., Williams, W.P. (1992). Visual rating scales for screening whorl-stage corn for resistance to fall armyworm. Technical Bulletin 186; Mississippi Agricultural and Forestry Research Experiment Station: Mississippi State University, MS, USA. http:// www. nal. usda. gov/. Accessed on 12 July 2022.

[30] Dong, C., Wu, Y., Gao, J., Zhou, Z., Mu, C., Ma, P., Chen, J., Wu, J. (2018). Field Inoculation and Classification of Maize Ear Rot Caused by Fusarium verticillioides. Bio Protoc. 2018 Dec 5;8(23): e3099. doi: 10.21769/BioProtoc.3099. PMID: 34532546; PMCID: PMC8342132.

[31] Tandzi, L. N., Mutengwa, C.S. (2020). Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy 2020, 10, 29. https://doi.org/10.3390/agronomy10010029.

[32] VSN International. (2010). Genstat for Windows 13th Edition. VSN International, Hemel Hempstead, UK. Web page: Genstat.co.uk.

[33] Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), 67–72. https://doi. org/ 10.4103 /aca. ACA_157_18.

[34] Midway, S., Robertson, M., Flinn, S., Kaller M. 2020. Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test. PeerJ 8: e10387 http://doi.org/10.7717/peerj.10387.

[35] Pannuti, L.E.R., Baldin, E.L.L., Hunt, T.E., Paula-Moraes, S.V. (2016). On-Plant Larval Movement and Feeding Behavior of Fall Armyworm (Lepidoptera: Noctuidae) on Reproductive Corn Stages, Environmental Entomology, Volume 45, Issue 1, February 2016, Pages 192–200, https://doi.org/10.1093/ee/nvv159.

[36] Nboyine, J., Asamani, E., Agboyi, L., Yahaya, I., Kusi, F., Adazebra, G., Benjamin, B. (2022). Assessment of the optimal frequency of insecticide sprays required to manage fall armyworm (Spodoptera frugiperda J.E Smith) in maize (Zea mays L.) in northern Ghana. (2022). CABI Agric Biosci 3, 3 (2022). https://doi.org/10.1186/s43170-021-00070-.

[37] FAO. (2017). FAO Advisory Note on Fall Armyworm (FAW) in Africa. http://www.fao.org/3/a-bs914e.pdf.

How to cite this paper

Bio-efficacy of Crude Aqueous Leaf Extracts against the Fall Armyworm (Spodoptera frugiperda) and Maize Ear Rots in Zambia

How to cite this paper: Mweshi Mukanga, Owen Machuku, Gilson Chipabika, Matthews Matimelo, Kelvin Mumba, Gilson Chipabika, Ndalamei Demaino Mabote, Vincent Simwinga, Isaiah Nthenga, Marian Lupulula, Sylvia Misengo Tembo, Kabosha Lwinya. (2022) Bio-efficacy of Crude Aqueous Leaf Extracts against the Fall Armyworm (Spodoptera frugiperda) and Maize Ear Rots in Zambia. Advance in Biological Research3(1), 38-49.

DOI: http://dx.doi.org/10.26855/abr.2022.11.001

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.