References
[1] R. Camassa and D. D. Holm. (1993). An integrable shallow water equation with peaked solitons. Physical Review Letters, 11, 1661-1664, (1993).
[2] A. S. Fokas and B. Fuchssteiner. (1981). Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D: Nonlinear Phenomena, 1, 47-66, (1981).
[3] A. Constantin and J. Escher. (1998). Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica, 2, 229-243, 1998.
[4] C. E. Kenig, G. Ponce, and L. Vega. (1993). Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Communications on Pure and Applied Mathematics, 4, 527-620, (1993).
[5] G. B. Whitham. (1980). Linear and Nonlinear Waves, John Wiley & Sons, New York, NY, USA, 1980.
[6] M. S. Osman, M. Inc, J. G. Liu, et al. (2020). Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation [J]. Physica Scripta, 95, 035229, (2020).
[7] P. Silva, I. L. Freire. (2022). Existence, persistence, and continuation of solutions for a generalized 0-Holm-Staley equation [J]. Journal of Differential Equations, 320, 371-398, (2022).
[8] X. Lu, A. Chen, T. Deng. (2019). Orbital Stability of Peakons for a Generalized Camassa-Holm Equation [J]. Journal of Applied Mathematics and Physics, 07(10), 2200-2211, (2019).
[9] S. Albeverio, Z. Brzeniak, A. Daletskii. (2021). Stochastic Camassa-Holm equation with convection type noise [J]. Journal of Differential Equations, 276(2), 404-432, (2021).
[10] S. Zheng, Z. Y. Ouyang, K. L. Wu. (2019). Singular traveling wave solutions for Boussinesq equation with power law nonlinearity and dual dispersion. Advances in Difference Equations, 1, 501, (2019).
[11] L. X. Tian and J. L. Yin. (2004). New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations. Chaos, Solitons and Fractals, 2, 289-299, (2004).
[12] Z. Liu and T. Qian. (2001). Peakons and their bifurcation in a generalized Camassa-Holm equation. International Journal of Bifurcation and Chaos, 3, article 781-792, (2001).
[13] T. F. Qian and M. Y. Tang. (2001). Peakons and periodic cusp waves in a generalized Camassa-Holm equation. Chaos, Solitons and Fractals, 7, 1347-1360, (2001).
[14] Z. Y. Liu and T. F. Qian. (2002). Peakons of the Camassa-Holm equation. Applied Mathematical Modelling, 3, 473-480, (2002).
[15] L. Tian and X. Song. (2004). New peaked solitary wave solutions of the generalized Camassa-Holm equation. Chaos, Solitons and Fractals, 3, 621-637, (2004).
[16] S. A. Khuri. (2005). New ansaz for obtaining wave solutions of the generalized Camassa-Holm equation. Chaos, Solitons and Fractals, 3, 705-710, (2005).
[17] Z. Y. Yin. (2007). On the Cauchy problem for the generalized Camassa-Holm equation. Nonlinear Analysis: Theory, Methods & Applications, 2, 460-471, (2007).
[18] O. G. Mustafa. (2006). On the Cauchy problem for a generalized Camassa-Holm equation. Nonlinear Analysis. Theory, Methods & Applications, 6, 1382-1399, (2006).
[19] C. O. R. Sarrico. (2003). Distributional Products and Global Solutions for Nonconservative Inviscid Burgers Equation. J. Math. Anal. Appl. 281, 641-656, (2003).
[20] C. O. R. Sarrico. (2012). Products of Distributions and Singular Travelling Waves as Solutions of Advection-Reaction Equations. Russian Journal of Mathematical Physics, 19, 244-255, (2012).
[21] C. O. R. Sarrico. (1988). About a Family of Distributional Products Important in the Applications. Port. Math. 45, 295-316, (1988).
[22] C. O. R. Sarrico. (1995). Distributional Products with Invariance for the Action of Unimodular Groups. Riv. Math. Univ. Parma 4, 79-99, (1995).
[23] C. O. R. Sarrico. (2006). New Solutions for the One-Dimensional Nonconservative Inviscid Burgers Equation. J. Math. Anal. Appl., 317, 496-509, (2006).
[24] C. O. R. Sarrico. (2010). Collision of Delta-Waves in a Turbulent Model Studied via a Distribution Product. Nonlinear Anal., 73, 2868-2875, (2010).