References
[1] Kuznetsov, Y.A., Piccardi, C. (1994). Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109-121.
[2] Hethcote, H.W., Driessche, P.V. (1995). An SIS epidemic model with variable population size and delay. J. Math. Biol. 34, 177-194.
[3] Richard Magin, Manuel D. Ortigueira, Igor Podlubny, Juan Trujillo. (2011). On the fractional signals and systems. 91(3), 350-371.
[4] Chengdai Huang, Jinde Cao, Min Xiao, Ahmed Alsaedi, Fuad E. Alsaadi. (2017). Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders. Applied Mathematics and Computation, 293, 293-310.
[5] Chengdai Huang, Jinde Cao, Min Xiao, Ahmed Alsaedi, Tasawar Hayat. (2017). Bifurcations in a delayed fractional complex-valued neural network. Applied Mathematics and Computation, 292, 210-227.
[6] Chengdai Huang, Jinde Cao, Min Xiao, Ahmed Alsaedi, Tasawar Hayat. (2018). Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons. Communications in Nonlinear Science and Numerical Simulation, 57, 1-13.
[7] Chengdai Huang, Yijie Meng, Jinde Cao, Ahmed Alsaedi, Fuad E. Alsaadi. (2017). New bifurcation results for fractional BAM neural network with leakage delay. Chaos, Solitons & Fractals, 100, 31-44.
[8] Al-Khaled, K., Alquran, M. (2014). An approximate solution for a fractional model of generalized Harry Dym equation. J. Math. Sci. 8, 125-130.
[9] Bagley, R. L. and Calico, R. (1991). Fractional order state equations for the control of visco elastically damped structures. Journal of Guidance, Control, and Dynamics, 14(2), 304-311.
[10] Ichise, M., Nagayanagi, Y., Kojima, T. (1971). An analog simulation of non-integer order transfer functions for analysis of electrode process. J. Electroanal. Chem. Interfacial Electrochem. 33, 253-265.
[11] Ahmad, W.M., Sprott, J.C. (2003). Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339-351.
[12] Podlubny, I. (1999). Fractional Differential Equations. New York: Academic Press.
[13] Hossein Jafari, Varsha Daftardar-Gejji. (2006). Solving a system of nonlinear fractional differential equations using Adomian decomposition. Journal of Computational and Applied Mathematics, 196(2), 644-651.
[14] I. Ameen, P. Novati. (2017). The solution of fractional order epidemic model by implicit Adams methods. Applied Mathematical Modelling, 43, 78-84.
[15] Shaher Momani, Zaid Odibat. (2007). Numerical approach to differential equations of fractional order. Journal of Computational and Applied Mathematics, 96-110.
[16] Elsadany, A. A., Matouk, A. E. (2015). Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization. Journal of Applied Mathematics and Computing, 49, 269-283.
[17] Ercan Balci, Senol Kartal, Ilhan Ozturk. (2021). Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system. Math. Model. Nat. Phenom, 16(3).
[18] Ercan Balcı, İlhan Öztürk, Senol Kartal. (2019). Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos, Solitons & Fractals, 123, 43-51.
[19] Abdelaziz, M.A.M., Ismail, A.I., Abdullah, F.A. et al. (2018). Bifurcations and chaos in a discrete SI epidemic model with fractional order. Adv Differ Equ, 2018(44).
[20] Khan, Abdul Qadeer & Khalique, Tanzeela. (2020). Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka‐Volterra model. Mathematical Methods in the Applied Sciences, 43(9), 5887-5904.
[21] Khan, AQ, Bukhari, SAH & Almatrafi, MB. (2022). Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie’s prey-predator model Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie’s prey-predator model. Alexandria Engineering Journal, 61(12), 11391-11404.
[22] I. Prigogine, R. Lefever. (1968) Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695-1700.
[23] G. Nicolis, I. Prigogine. (1977). Self-Organizations in Non-equilibrium Systems (Wiley-Interscience, New York).
[24] Kuznetsov, Y. (1998). Elements of applied bifurcation theory (Vol. 112). New York, USA: Springer Science and Business Media.
[25] Wen, G. (2005). Criterion to identify hopf bifurcations in maps of arbitrary dimension. Physical Review E, 72(2), 026201.
[26] Yao, S. (2012). New Bifurcation Critical Criterion of Flip-Neimark-Sacker Bifurcations for Two-Parameterized Family of n -Dimensional Discrete Systems. Discrete Dynamics in Nature and Society, 2012, 264526.
[27] Yuan, L. G., Yang, Q. G. (2015). Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Applied Mathematical Modelling, 39(8), 2345-2362.
[28] S.H. Strogatz. (1994). Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, New York).
[29] X.S. Luo, G.R. Chen. (2003). B.H.Wang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fractals 18, 775-783.
[30] J.L. Ren, L.P. Yu. (2016). Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J. NonlinearSci. 26, 1895-1931.